3 research outputs found

    Image_1_Aggrephagy-related patterns in tumor microenvironment, prognosis, and immunotherapy for acute myeloid leukemia: a comprehensive single-cell RNA sequencing analysis.docx

    No full text
    Acute myeloid leukemia (AML) is a complex mixed entity composed of malignant tumor cells, immune cells and stromal cells, with intra-tumor and inter-tumor heterogeneity. Single-cell RNA sequencing enables a comprehensive study of the highly complex tumor microenvironment, which is conducive to exploring the evolutionary trajectory of tumor cells. Herein, we carried out comprehensive analyses of aggrephagy-related cell clusters based on single-cell sequencing for patients with acute myeloid leukemia. A total of 11 specific cell types (T, NK, CMP, Myeloid, GMP, MEP, Promono, Plasma, HSC, B, and Erythroid cells) using t-SNE dimension reduction analysis. Several aggrephagy-related genes were highly expressed in the 11 specific cell types. Using Monocle analysis and NMF clustering analysis, six aggrephagy-related CD8+ T clusters, six aggrephagy-related NK clusters, and six aggrephagy-related Mac clusters were identified. We also evaluated the ligand-receptor links and Cell–cell communication using CellChat package and CellChatDB database. Furthermore, the transcription factors (TFs) of aggrephagy-mediated cell clusters for AML were assessed through pySCENIC package. Prognostic analysis of the aggrephagy-related cell clusters based on R package revealed the differences in prognosis of aggrephagy-mediated cell clusters. Immunotherapy of the aggrephagy-related cell clusters was investigated using TIDE algorithm and public immunotherapy cohorts. Our study revealed the significance of aggrephagy-related patterns in tumor microenvironment, prognosis, and immunotherapy for AML.</p

    Table_1_Aggrephagy-related patterns in tumor microenvironment, prognosis, and immunotherapy for acute myeloid leukemia: a comprehensive single-cell RNA sequencing analysis.xlsx

    No full text
    Acute myeloid leukemia (AML) is a complex mixed entity composed of malignant tumor cells, immune cells and stromal cells, with intra-tumor and inter-tumor heterogeneity. Single-cell RNA sequencing enables a comprehensive study of the highly complex tumor microenvironment, which is conducive to exploring the evolutionary trajectory of tumor cells. Herein, we carried out comprehensive analyses of aggrephagy-related cell clusters based on single-cell sequencing for patients with acute myeloid leukemia. A total of 11 specific cell types (T, NK, CMP, Myeloid, GMP, MEP, Promono, Plasma, HSC, B, and Erythroid cells) using t-SNE dimension reduction analysis. Several aggrephagy-related genes were highly expressed in the 11 specific cell types. Using Monocle analysis and NMF clustering analysis, six aggrephagy-related CD8+ T clusters, six aggrephagy-related NK clusters, and six aggrephagy-related Mac clusters were identified. We also evaluated the ligand-receptor links and Cell–cell communication using CellChat package and CellChatDB database. Furthermore, the transcription factors (TFs) of aggrephagy-mediated cell clusters for AML were assessed through pySCENIC package. Prognostic analysis of the aggrephagy-related cell clusters based on R package revealed the differences in prognosis of aggrephagy-mediated cell clusters. Immunotherapy of the aggrephagy-related cell clusters was investigated using TIDE algorithm and public immunotherapy cohorts. Our study revealed the significance of aggrephagy-related patterns in tumor microenvironment, prognosis, and immunotherapy for AML.</p

    Pressure-Engineered Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene with Enhanced Conductivity and Accelerated Reaction Kinetics of Lithium Storage

    No full text
    We studied the structure–function relationship of compressed Ti3C2Tx MXene using high-pressure in situ synchrotron radiation, impedance spectroscopy, Hall effect measurements, and first-principles calculations. With increasing pressure, the conductivity of Ti3C2Tx MXene increases along with its continued lattice shrinkage. A pressure range of 0.4–2.2 GPa exhibits a sharp decrease in resistance, which decreases by more than one order of magnitude from 3.3 × 104 to 1.4 × 103 Ω. A pressure range of 2.2–6.6 GPa exhibits a steady resistance with a slight decrease of 0.2%. As the pressure drops to atmospheric conditions, the resistance increases slightly to 4.2 × 103 Ω. This is accompanied by a transformation of the semiconductor into metal. An irreversible increase in conductivity is observed owing to an increase in the electron concentration and a decrease in the grain-boundary potential barrier. Furthermore, abundant Ti3C2Tx undergoing prepressure treatments (0.4, 2.0, and 4.0 GPa) was first prepared using a double-anvil hydraulic press. The recycled samples retain an accordion-like layered structure with slight lattice shrinkage while the voids between the sheets contract considerably, increasing the density. Correspondingly, electrochemical results show a pressure threshold of 2.0 GPa based on the rapid quenching from the hydraulic press. This weakens the electric polarization in redox reactions and increases the ionic transport rate for the formation of a Ti3C2Tx anode owing to pressure improving the conductivity and interlaminar densification. Our study shows a new, simple, and universal way to regulate various MXenes and also promotes the application of MXene-based materials in energy storage and related fields
    corecore