250 research outputs found

    Gaussian beta process

    Get PDF
    <p>This thesis presents a new framework for constituting a group of dependent completely random measures, unifying and extending methods in the literature. The dependent completely random measures are constructed based on a shared completely random measure, which is extended to the covariate space, and further differentiated by the covariate information associated with the data for which the completely random measures serve as priors. As a concrete example of the flexibility provided by the framework, a group of dependent feature learning measures are constructed based on a shared beta process, with Gaussian processes applied to build adaptive dependencies learnt from the practical data, denoted as the Gaussian beta process. Experiment results are presented for gene-expression series data (time as covariate), as well as digital image data (spatial location as covariate).</p>Thesi

    Application of Stochastic Processes in Nonparametric Bayes

    Get PDF
    <p>This thesis presents theoretical studies of some stochastic processes and their appli- cations in the Bayesian nonparametric methods. The stochastic processes discussed in the thesis are mainly the ones with independent increments - the Levy processes. We develop new representations for the Levy measures of two representative exam- ples of the Levy processes, the beta and gamma processes. These representations are manifested in terms of an infinite sum of well-behaved (proper) beta and gamma dis- tributions, with the truncation and posterior analyses provided. The decompositions provide new insights into the beta and gamma processes (and their generalizations), and we demonstrate how the proposed representation unifies some properties of the two, as these are of increasing importance in machine learning.</p><p>Next a new Levy process is proposed for an uncountable collection of covariate- dependent feature-learning measures; the process is called the kernel beta process. Available covariates are handled efficiently via the kernel construction, with covari- ates assumed observed with each data sample ("customer"), and latent covariates learned for each feature ("dish"). The dependencies among the data are represented with the covariate-parameterized kernel function. The beta process is recovered as a limiting case of the kernel beta process. An efficient Gibbs sampler is developed for computations, and state-of-the-art results are presented for image processing and music analysis tasks.</p><p>Last is a non-Levy process example of the multiplicative gamma process applied in the low-rank representation of tensors. The multiplicative gamma process is applied along the super-diagonal of tensors in the rank decomposition, with its shrinkage property nonparametrically learns the rank from the multiway data. This model is constructed as conjugate for the continuous multiway data case. For the non- conjugate binary multiway data, the Polya-Gamma auxiliary variable is sampled to elicit closed-form Gibbs sampling updates. This rank decomposition of tensors driven by the multiplicative gamma process yields state-of-art performance on various synthetic and benchmark real-world datasets, with desirable model scalability.</p>Dissertatio

    CFN-ESA: A Cross-Modal Fusion Network with Emotion-Shift Awareness for Dialogue Emotion Recognition

    Full text link
    Multimodal Emotion Recognition in Conversation (ERC) has garnered growing attention from research communities in various fields. In this paper, we propose a cross-modal fusion network with emotion-shift awareness (CFN-ESA) for ERC. Extant approaches employ each modality equally without distinguishing the amount of emotional information, rendering it hard to adequately extract complementary and associative information from multimodal data. To cope with this problem, in CFN-ESA, textual modalities are treated as the primary source of emotional information, while visual and acoustic modalities are taken as the secondary sources. Besides, most multimodal ERC models ignore emotion-shift information and overfocus on contextual information, leading to the failure of emotion recognition under emotion-shift scenario. We elaborate an emotion-shift module to address this challenge. CFN-ESA mainly consists of the unimodal encoder (RUME), cross-modal encoder (ACME), and emotion-shift module (LESM). RUME is applied to extract conversation-level contextual emotional cues while pulling together the data distributions between modalities; ACME is utilized to perform multimodal interaction centered on textual modality; LESM is used to model emotion shift and capture related information, thereby guide the learning of the main task. Experimental results demonstrate that CFN-ESA can effectively promote performance for ERC and remarkably outperform the state-of-the-art models.Comment: 13 pages, 10 figure

    Simple Model Also Works: A Novel Emotion Recognition Network in Textual Conversation Based on Curriculum Learning Strategy

    Full text link
    Emotion Recognition in Conversation (ERC) has emerged as a research hotspot in domains such as conversational robots and question-answer systems. How to efficiently and adequately retrieve contextual emotional cues has been one of the key challenges in the ERC task. Existing efforts do not fully model the context and employ complex network structures, resulting in excessive computational resource overhead without substantial performance improvement. In this paper, we propose a novel Emotion Recognition Network based on Curriculum Learning strategy (ERNetCL). The proposed ERNetCL primarily consists of Temporal Encoder (TE), Spatial Encoder (SE), and Curriculum Learning (CL) loss. We utilize TE and SE to combine the strengths of previous methods in a simplistic manner to efficiently capture temporal and spatial contextual information in the conversation. To simulate the way humans learn curriculum from easy to hard, we apply the idea of CL to the ERC task to progressively optimize the network parameters of ERNetCL. At the beginning of training, we assign lower learning weights to difficult samples. As the epoch increases, the learning weights for these samples are gradually raised. Extensive experiments on four datasets exhibit that our proposed method is effective and dramatically beats other baseline models.Comment: 12 pages,9 figure

    An Analytical Solution of Radiative Transfer in the Coupled Atmosphere-Ocean System with Rough Surface

    Get PDF
    Using the efficient discrete-ordinate method, we present an analytical solution for radiative transfer in the coupled atmosphere-ocean system with rough air-water interface. The theoretical formulations of the radiative transfer equation and solution are described. The effects of surface roughness on radiation field in the atmosphere and ocean are studied and compared with measurements. The results show that ocean surface roughness has significant effects on the upwelling radiation in the atmosphere and the downwelling radiation in the ocean. As wind speed increases, the angular domain of sunglint broadens, the surface albedo decreases, and the transmission to ocean increases. The downward radiance field in the upper ocean is highly anisotropic, but this anisotropy decreases rapidly as surface wind increases and as depth in ocean increases. The effects of surface roughness on radiation also depend greatly on both wavelength and angle of incidence (i.e., solar elevation); these effects are significantly smaller throughout the spectrum at high sun. The model-observation discrepancies may indicate that the Cox-Munk surface roughness model is not sufficient for high wind conditions

    Meeting-Merging-Mission: A Multi-robot Coordinate Framework for Large-Scale Communication-Limited Exploration

    Full text link
    This letter presents a complete framework Meeting-Merging-Mission for multi-robot exploration under communication restriction. Considering communication is limited in both bandwidth and range in the real world, we propose a lightweight environment presentation method and an efficient cooperative exploration strategy. For lower bandwidth, each robot utilizes specific polytopes to maintains free space and super frontier information (SFI) as the source for exploration decision-making. To reduce repeated exploration, we develop a mission-based protocol that drives robots to share collected information in stable rendezvous. We also design a complete path planning scheme for both centralized and decentralized cases. To validate that our framework is practical and generic, we present an extensive benchmark and deploy our system into multi-UGV and multi-UAV platforms
    corecore