24 research outputs found

    Diphenyl Difluoroketone: A Potent Chemotherapy Candidate for Human Hepatocellular Carcinoma

    Get PDF
    Diphenyl difluoroketone (EF24), a molecule having structural similarity to curcumin, was recently reported to inhibit proliferation of various cancer cells significantly. Here we try to determine the effect and mechanism of EF24 on hepatocellular carcinoma. 2 µM EF24 was found to inhibit the proliferation of PLC/PRF/5, Hep3B, HepG2, SK-HEP-1 and Huh 7 cell lines. However, even 8 µM EF24 treatment did not affect the proliferation of normal liver LO2 cells. Accordingly, 20 mg/kg/d EF24 inhibited the growth of the tumor xenografts conspicuously while causing no apparent change in liver, spleen or body weight. In addition, significant apoptosis and G2/M phase cell cycle arrest were found using flow cytometry. Besides, caspases and PARP activation and features typical of apoptosis including fragmented nuclei with condensed chromatin were also observed. Furthermore, the mechanism was targeted at the reduction of nuclear factor kappa b (NF-κB) pathway and the NF-κB–regulated gene products Bcl-2, COX-2, Cyclin B1. Our study has offered a strategy that EF24 being a therapeutic agent for hepatocellular carcinoma

    Tryptophan Metabolism and Gut Microbiota: A Novel Regulatory Axis Integrating the Microbiome, Immunity, and Cancer

    No full text
    Tryptophan metabolism and gut microbiota form an integrated regulatory axis that impacts immunity, metabolism, and cancer. This review consolidated current knowledge on the bidirectional interactions between microbial tryptophan processing and the host. We focused on how the gut microbiome controls tryptophan breakdown via the indole, kynurenine, and serotonin pathways. Dysbiosis of the gut microbiota induces disruptions in tryptophan catabolism which contribute to disorders like inflammatory conditions, neuropsychiatric diseases, metabolic syndromes, and cancer. These disruptions affect immune homeostasis, neurotransmission, and gut-brain communication. Elucidating the mechanisms of microbial tryptophan modulation could enable novel therapeutic approaches like psychobiotics and microbiome-targeted dietary interventions. Overall, further research on the microbiota-tryptophan axis has the potential to revolutionize personalized diagnostics and treatments for improving human health

    Improved YOLOv7-Tiny Complex Environment Citrus Detection Based on Lightweighting

    No full text
    In complex citrus orchard environments, light changes, branch shading, and fruit overlapping impact citrus detection accuracy. This paper proposes the citrus detection model YOLO-DCA in complex environments based on the YOLOv7-tiny model. We used depth-separable convolution (DWConv) to replace the ordinary convolution in ELAN, which reduces the number of parameters of the model; we embedded coordinate attention (CA) into the convolution to make it a coordinate attention convolution (CAConv) to replace the ordinary convolution of the neck network convolution; and we used a dynamic detection head to replace the original detection head. We trained and evaluated the test model using a homemade citrus dataset. The model size is 4.5 MB, the number of parameters is 2.1 M, mAP is 96.98%, and the detection time of a single image is 5.9 ms, which is higher than in similar models. In the application test, it has a better detection effect on citrus in occlusion, light transformation, and motion change scenes. The model has the advantages of high detection accuracy, small model space occupation, easy application deployment, and strong robustness, which can help citrus-picking robots and improve their intelligence level
    corecore