21 research outputs found

    Community Code Verification Exercise for Simulating Sequences of Earthquakes and Aseismic Slip (SEAS)

    Get PDF
    Numerical simulations of sequences of earthquakes and aseismic slip (SEAS) have made great progress over past decades to address important questions in earthquake physics. However, significant challenges in SEAS modeling remain in resolving multiscale interactions between earthquake nucleation, dynamic rupture, and aseismic slip, and understanding physical factors controlling observables such as seismicity and ground deformation. The increasing complexity of SEAS modeling calls for extensive efforts to verify codes and advance these simulations with rigor, reproducibility, and broadened impact. In 2018, we initiated a community code‐verification exercise for SEAS simulations, supported by the Southern California Earthquake Center. Here, we report the findings from our first two benchmark problems (BP1 and BP2), designed to verify different computational methods in solving a mathematically well‐defined, basic faulting problem. We consider a 2D antiplane problem, with a 1D planar vertical strike‐slip fault obeying rate‐and‐state friction, embedded in a 2D homogeneous, linear elastic half‐space. Sequences of quasi‐dynamic earthquakes with periodic occurrences (BP1) or bimodal sizes (BP2) and their interactions with aseismic slip are simulated. The comparison of results from 11 groups using different numerical methods show excellent agreements in long‐term and coseismic fault behavior. In BP1, we found that truncated domain boundaries influence interseismic stressing, earthquake recurrence, and coseismic rupture, and that model agreement is only achieved with sufficiently large domain sizes. In BP2, we found that complexity of fault behavior depends on how well physical length scales related to spontaneous nucleation and rupture propagation are resolved. Poor numerical resolution can result in artificial complexity, impacting simulation results that are of potential interest for characterizing seismic hazard such as earthquake size distributions, moment release, and recurrence times. These results inform the development of more advanced SEAS models, contributing to our further understanding of earthquake system dynamics

    Community Code Verification Exercise for Simulating Sequences of Earthquakes and Aseismic Slip (SEAS)

    Get PDF
    Numerical simulations of sequences of earthquakes and aseismic slip (SEAS) have made great progress over past decades to address important questions in earthquake physics. However, significant challenges in SEAS modeling remain in resolving multiscale interactions between earthquake nucleation, dynamic rupture, and aseismic slip, and understanding physical factors controlling observables such as seismicity and ground deformation. The increasing complexity of SEAS modeling calls for extensive efforts to verify codes and advance these simulations with rigor, reproducibility, and broadened impact. In 2018, we initiated a community code‐verification exercise for SEAS simulations, supported by the Southern California Earthquake Center. Here, we report the findings from our first two benchmark problems (BP1 and BP2), designed to verify different computational methods in solving a mathematically well‐defined, basic faulting problem. We consider a 2D antiplane problem, with a 1D planar vertical strike‐slip fault obeying rate‐and‐state friction, embedded in a 2D homogeneous, linear elastic half‐space. Sequences of quasi‐dynamic earthquakes with periodic occurrences (BP1) or bimodal sizes (BP2) and their interactions with aseismic slip are simulated. The comparison of results from 11 groups using different numerical methods show excellent agreements in long‐term and coseismic fault behavior. In BP1, we found that truncated domain boundaries influence interseismic stressing, earthquake recurrence, and coseismic rupture, and that model agreement is only achieved with sufficiently large domain sizes. In BP2, we found that complexity of fault behavior depends on how well physical length scales related to spontaneous nucleation and rupture propagation are resolved. Poor numerical resolution can result in artificial complexity, impacting simulation results that are of potential interest for characterizing seismic hazard such as earthquake size distributions, moment release, and recurrence times. These results inform the development of more advanced SEAS models, contributing to our further understanding of earthquake system dynamics

    Real-Time Web Map Construction Based on Multiple Cameras and GIS

    No full text
    Previous VideoGIS integration methods mostly used geographic homography mapping. However, the related processing techniques were mainly for independent cameras and the software architecture was C/S, resulting in large deviations in geographic video mapping for small scenes, a lack of multi-camera video fusion, and difficulty in accessing real-time information with WebGIS. Therefore, we propose real-time web map construction based on the object height and camera posture (RTWM-HP for short). We first consider the constraint of having a similar height for each object by constructing an auxiliary plane and establishing a high-precision homography matrix (HP-HM) between the plane and the map; thus, the accuracy of geographic video mapping can be improved. Then, we map the objects in the multi-camera video with overlapping areas to geographic space and perform the object selection with the multi-camera (OS-CDD) algorithm, which includes the confidence of the object, the distance, and the angle between the objects and the center of the cameras. Further, we use the WebSocket technology to design a hybrid C/S and B/S software framework that is suitable for WebGIS integration. Experiments were carried out based on multi-camera videos and high-precision geospatial data in an office and a parking lot. The case study’s results show the following: (1) The HP-HM method can achieve the high-precision geographic mapping of objects (such as human heads and cars) with multiple cameras; (2) the OS-CDD algorithm can optimize and adjust the positions of the objects in the overlapping area and achieve a better map visualization effect; (3) RTWM-HP can publish real-time maps of objects with multiple cameras, which can be browsed in real time through point layers and hot-spot layers through WebGIS. The methods can be applied to some fields, such as person or car supervision and the flow analysis of customers or traffic passengers

    Study on screening potential allergenic proteins from infant milk powders based on human mast cell membrane chromatography and histamine release assays

    No full text
    Cow's milk allergy is mainly observed in infants and young children. Most allergic reactions affect the skin, followed by the gastrointestinal and respiratory systems. Conventional diagnosis is based on positive allergy studies and evaluation of parameters including IgE and IgG1 levels, acute allergic skin response and anaphylactic shock reactions. We developed a cell membrane chromatographic (CMC) method based on human mast cells (HMC-1) for screening potential allergens in infant formula milk powders (IFMP). HMC-1 cell membranes were extracted and mixed with silica to prepare cell membrane chromatography columns (10 mm × 2 mm i.d., 5 µm). Under the conditions of 0.2 mL/min flow rate and 214 nm detection wavelength, human breast milk showed no retention. However, IFMP showed clear retention. The retained fractions were collected and analyzed through matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS). Four major milk proteins, i.e., α-casein, β-casein, α-lactalbumin, and β-lactoglobulin A, were identified. Furthermore, these proteins and β-lactoglobulin B showed clear retention on HMC-1/CMC columns. To test the degranulation effects of the five proteins, histamine and β-hexosaminidase release assays were carried out. All five proteins induced HMC-1 cells to release histamine and β-hexosaminidase. Also, we established a reversed phase liquid chromatographic (RPLC) method for the determination of the five proteins in IFMP and the results showed that 90% proteins in IFMP were α-casein and β-casein. We concluded that cow's milk proteins may be potential allergens and caseins cause more β-casein allergic risk than other proteins. This conclusion was consistent with other studies. Keywords: Allergenic proteins, Cell membrane chromatography, Milk powder

    Designed growth of WO3/PEDOT core/shell hybrid nanorod arrays with modulated electrochromic properties

    No full text
    Designed growth of tungsten oxide (WO3)/poly(3,4-ethylenedioxythiophene) (PEDOT) core/shell hybrid nanorod arrays has been obtained by combining solvothermal and in situ electropolymerization techniques. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and Raman characterization results indicate that the hybrid nanorods are composed of single crystalline WO3 nanocores wrapped by thin amorphous PEDOT nanoshells. The hybrid nanorods exhibit promising electrochromic performance of much shorter response time (3.8 s for coloring and 3.6 s for bleaching) than the bare WO3 nanorods (12.4 s for coloring and 7.6 s for bleaching), while the optical contrast of the hybrid nanorods increases from 26% of PEDOT to 72% in 633 nm. And the coloring efficiency and stability of the core/shell hybrid nanorods are also enhanced compared to the individual components. Dynamic analysis suggests a synergistic effect between the WO3 nanocore and the PEDOT nanoshell. In addition, color depth and optical contrast of the hybrid nanorods can be modulated by adjusting the applied voltage and the deposition of the PEDOT nanoshell. The hybrid nanorod films obtained by the cost-effective wet chemical methods may find promising applications in energy-saving windows, smart displays as well as other energy efficient technologies.This project is supported by the National Natural Science Foundation of China (Grant no. 51772072, 51402078), the 111 Project (B18018), the Foundation for Tianchang Intelligent Equipment and Instruments Research Institute (Grant No. JZ2017AHDS1147), Anhui Provincial Nature Science Foundation (No. 1608085ME93), Fundamental Research Funds for the Central Universities (No. JZ2015HGCH0150, JZ2016HGTB0719), Young Scholar Enhancement Foundation (Plan B) of HFUT, China (JZ2016HGTB0711)

    Rational Design of Oxygen Deficiency-Controlled Tungsten Oxide Electrochromic Films with an Exceptional Memory Effect

    No full text
    Owing to their nonemissive characteristics, electrochromic materials promise distinct advantages in developing next-generation eye-friendly information displays. Yet, it remains a challenge to manipulate the structure of the materials to achieve a strong memory effect with high optical contrast, which is of importance for displaying images with essentially zero energy consumption. Here, we design a mixed crystalline WOx thin film implanted with massive oxygen deficiencies based on a conventional reactive magnetron sputtering process. The obtained WOx film exhibits high dual-band optical modulation in both visible (VIS, 99.0% in 633 nm) and near-infrared (NIR, 94.2% in 1300 nm) regions as well as an exceptional memory effect (the colored transmittance increases only by 0.04% at 633 nm after 50 days). The enhanced electrochromic performance can be attributed to dense Li+-ion binding sites as well as the trapping effect provided by the massive internal oxygen deficiencies. The strategy in this work bestows the WOx thin film a promising candidate for developing electrochromic information displays and other energy-efficient devices as well.This project is supported by the National Natural Science Foundation of China (51772072, 51672065, and U1810204), Higher Education Discipline Innovation Project “New Materials and Technology for Clean Energy” (B18018), the Foundation for Tianchang Intelligent Equipment and Instruments Research Institute (JZ2017AHDS1147), Anhui Provincial Nature Science Foundation (1608085ME93), and Fundamental Research Funds for the Central Universities (PA2019GDQT0022, PA2019GDQT0015, and PA2019GDZC0096). H.H.T. acknowledges the award of the Overseas Distinguished Professorship (Haiwai Mingshi) by the Chinese Ministry of Education

    Preparation of V2O5 dot-decorated WO3 nanorod arrays for high performance multi-color electrochromic devices

    No full text
    WO3 nanorod/V2O5 dot hybrid arrays have been successfully prepared by combining solvothermal and electrodeposition methods. Microstructural characterization evidences single crystallinity of WO3 nanorods decorated with V2O5 dots below 3 nm in average diameter. Electrochemical and electrochromic measurements reveal that the nanorod arrays demonstrate high transmittance modulation (57% at 776 nm), fast switching speeds (bleaching: 4.4 s and coloration: 4.8 s), multi-colors (black, green-yellow and orange-yellow) and high coloration efficiency (87.1 cm2 C−1 at 776 nm), which exhibited significantly improved electrochromic properties with superior cyclic stability compared to the individual components. Mechanistic investigation suggests that the synergistic effect between the V2O5 dots and the WO3 nanorods as well as the architecture of the aligned nanoarrays can promote the reaction dynamics and enhance the cyclic stability during the electrochromic process. The exceptional electrochromic properties of the WO3 nanorod/V2O5 dot arrays show their great potential in constructing high performance inorganic electrochromic devices for energy-saving and smart display applications.This project is supported by the National Natural Science Foundation of China (Grant no. 51772072, 51402078), the 111 Project (B18018), the Foundation for Tianchang Intelligent Equipment and Instruments Research Institute (Grant No. JZ2017AHDS1147), the Anhui Provincial Nature Science Foundation (No. 1608085ME93), the Fundamental Research Funds for the Central Universities (No. JZ2015HGCH0150, JZ2016HGTB0719), and the Young Scholar Enhancement Foundation (Plan B) of HFUT, China (JZ2016HGTB0711)

    Variation of DNA Methylome of Zebrafish Cells under Cold Pressure

    No full text
    <div><p>DNA methylation is an essential epigenetic mechanism involved in multiple biological processes. However, the relationship between DNA methylation and cold acclimation remains poorly understood. In this study, Methylated DNA Immunoprecipitation Sequencing (MeDIP-seq) was performed to reveal a genome-wide methylation profile of zebrafish (Danio rerio) embryonic fibroblast cells (ZF4) and its variation under cold pressure. MeDIP-seq assay was conducted with ZF4 cells cultured at appropriate temperature of 28°C and at low temperature of 18°C for 5 (short-term) and 30 (long-term) days, respectively. Our data showed that DNA methylation level of whole genome increased after a short-term cold exposure and decreased after a long-term cold exposure. It is interesting that metabolism of folate pathway is significantly hypomethylated after short-term cold exposure, which is consistent with the increased DNA methylation level. 21% of methylation peaks were significantly altered after cold treatment. About 8% of altered DNA methylation peaks are located in promoter regions, while the majority of them are located in non-coding regions. Methylation of genes involved in multiple cold responsive biological processes were significantly affected, such as anti-oxidant system, apoptosis, development, chromatin modifying and immune system suggesting that those processes are responsive to cold stress through regulation of DNA methylation. Our data indicate the involvement of DNA methylation in cellular response to cold pressure, and put a new insight into the genome-wide epigenetic regulation under cold pressure.</p></div

    Enriched GO categories under cold pressure.

    No full text
    <p>GO enrichment analysis was performed in both 5-day and 30-day cold treated cells (cultured at 18°C) compared with control cells (cultured at 28°C). Genes related with DMRs were subjected to the analysis. GOs with ratio > = 1.5 and P value < = 0.05 are shown in the figure. P values for enrichment of GO categories are shown in the figure.</p
    corecore