35 research outputs found

    The association between ambient temperature and antimicrobial resistance of Klebsiella pneumoniae in China: a difference-in-differences analysis

    Get PDF
    IntroductionAntimicrobial resistance (AMR) of Klebsiella pneumoniae (K. pneumoniae) poses a significant global public health threat and is responsible for a high prevalence of infections and mortality. However, knowledge about how ambient temperature influences the AMR of K. pneumoniae is limited in the context of global warming.MethodsAMR data of 31 Chinese provinces was collected from the China Antimicrobial Resistance Surveillance System (CARSS) between 2014 and 2020. Socioeconomic and meteorological data were collected from the China Statistical Yearbook during the same period. A modified difference-in-differences (DID) approach was applied to estimate the association between ambient temperature and third-generation cephalosporin-resistant K. pneumoniae (3GCRKP) and carbapenem-resistant K. pneumoniae (CRKP). Furthermore, moderating effects of socioeconomic factors were also evaluated.ResultsEvery 1°C increase in annual average temperature was associated with a 4.7% (relative risk (RR):1.047, 95% confidence intervals (CI): 1.031–1.082) increase in the detection rate of 3GCRKP, and a 10.7% (RR:1.107, 95% CI: 1.011–1.211) increase in the detection rate of CRKP. The relationships between ambient temperature and 3GCRKP and CRKP were found to be moderated by socioeconomic status (GDP per capita, income per capita, and consumption per capita; the interaction p-values <0.05), where higher economic status was found to strengthen the effects of temperature on the detection rate of 3GCRKP and weaken the effects on the detection rate of CRKP.DiscussionAmbient temperature was found to be positively associated with AMR of K. pneumoniae, and this association was moderated by socioeconomic status. Policymakers should consider the impact of global warming and high temperatures on the spread of 3GCRKP and CRKP when developing strategies for the containment of AMR

    Effect of live poultry market interventions on influenza A(H7N9) virus, Guangdong, China

    Get PDF
    Since March 2013, three waves of human infection with avian influenza A(H7N9) virus have been detected in China. To investigate virus transmission within and across epidemic waves, we used surveillance data and whole-genome analysis of viruses sampled in Guangdong during 2013–2015. We observed a geographic shift of human A(H7N9) infections from the second to the third waves. Live poultry market interventions were undertaken in epicenter cities; however, spatial phylogenetic analysis indicated that the third-wave outbreaks in central Guangdong most likely resulted from local virus persistence rather than introduction from elsewhere. Although the number of clinical cases in humans declined by 35% from the second to the third waves, the genetic diversity of third-wave viruses in Guangdong increased. Our results highlight the epidemic risk to a region reporting comparatively few A(H7N9) cases. Moreover, our results suggest that live-poultry market interventions cannot completely halt A(H7N9) virus persistence and dissemination

    CAD Applications in a Formula SAE Project Based on V Designing Process

    No full text
    ABSTRACT With the purpose of designing and building a FSAE racing vehicle which meets certain rules, the V designing process was combined organically with the process of vehicle development. The guidance of this process enables the team to finish goal setting and subdividing, component designing, simulating, optimizing, manufacturing and vehicle testing, in a rational procedure. Based on the V designing process, this paper focused on analysis of the vehicle dynamic performances, design and simulation of different vehicle components using various CAD software. This procedure effectively improved the quality of the products, reduced the costs and shortened the periods of the vehicle development, and also ensured the correctness of the results

    MAFSIDS: a reinforcement learning-based intrusion detection model for multi-agent feature selection networks

    No full text
    Abstract Large unbalanced datasets pose challenges for machine learning models, as redundant and irrelevant features can hinder their effectiveness. Furthermore, the performance of intrusion detection systems (IDS) can be further degraded by the emergence of new network attack types. To address these issues, we propose MAFSIDS (Multi-Agent Feature Selection Intrusion Detection System), a DQL (Deep Q-Learning) based IDS. MAFSIDS comprises a feature self-selection algorithm and a DRL (Deep Reinforcement Learning) attack detection module. The feature self-selection algorithm leverages a multi-agent reinforcement learning framework, which redefines the feature selection problem by converting the traditional 2N{2}^{N} 2 N feature selection space into NN N agent representations. This approach reduces model complexity and enhances the search strategy for feature selection. To ensure accurate feature representation and expedite the feature selection process, we have also developed a GCN (Graph Convolutional Network) method that extracts deeper features from the data. The DRL attack detection module utilizes the Mini-Batchs technique to encode the data, allowing reinforcement learning to be applied in a supervised learning context. This integration improves accuracy. Additionally, the policy network in this module is designed to be minimalist, enhancing model efficiency. To evaluate the performance of our model, we conducted comprehensive simulation experiments using Python. We tested the model using the CSE-CIC-IDS2018 and NSL-KDD datasets, achieving impressive accuracy rates of 96.8% and 99.1%, as well as F1-Scores of 96.3% and 99.1%, respectively. The selected feature subset successfully eliminates approximately 80% of redundant features compared to the original feature set. Furthermore, we compared our proposed model with other popular machine-learning models

    Digitalized design of extraforaminal lumbar interbody fusion: a computer-based simulation and cadaveric study.

    No full text
    PURPOSE: This study aims to investigate the feasibility of a novel lumbar approach named extraforaminal lumbar interbody fusion (ELIF), a newly emerging minimally invasive technique for treating degenerative lumbar disorders, using a digitalized simulation and a cadaveric study. METHODS: The ELIF surgical procedure was simulated using the Mimics surgical simulator and included dissection of the superior articular process, dilation of the vertebral foramen, and placement of pedicle screws and a cage. ELIF anatomical measures were documented using a digitalized technique and subsequently validated on fresh cadavers. RESULTS: The use of the Mimics allowed for the vivid simulation of ELIF surgical procedures, while the cadaveric study proved the feasibility of this novel approach. ELIF had a relatively lateral access approach that was located 8-9 cm lateral to the median line with an access depth of approximately 9 cm through the intermuscular space. Dissection of the superior articular processes could fully expose the target intervertebral discs and facilitate a more inclined placement of the pedicle screws and cage with robust enhancement. CONCLUSIONS: According to the computer-based simulation and cadaveric study, it is feasible to perform ELIF. Further research including biomechanical study is needed to prove ELIF has a superior ability to preserve the posterior tension bands of the spinal column, with similar effects on spinal decompression, fixation, and fusion, and if it can enhance post-fusion spinal stability and expedites postoperative recovery

    Personalized neoantigen-based immunotherapy for advanced collecting duct carcinoma: case report

    No full text
    Background Collecting duct carcinoma (CDC) of the kidney is a rare and highly aggressive malignant tumor with the worst prognosis among all renal cancers. Nevertheless, the first-line treatments, including chemotherapy and target therapy, usually show poor response to CDC. Recent studies have suggested that immunotherapy targeting personal tumor-specific neoantigens could be a promising strategy for several solid cancers. However, whether it has therapeutic potential in CDC remains unclear.Case presentation Here, we report a case of an Asian patient who underwent personalized neoantigen-based immunotherapy. The patient was diagnosed with metastatic CDC and suffered extensive tumor progression following sorafenib treatment. Based on the patient’s own somatic mutational profile, a total of 13 neoantigens were identified and corresponding long-peptide vaccine and neoantigen-reactive T cells (NRTs) were prepared. After six cycles of neoantigen-based vaccination and T-cell immunotherapy, the patient was reported with stable disease status in tumor burden and significant alleviation of bone pain. Ex vivo interferon-γ enzyme-linked immunospot assay proved the reactivity to 12 of 13 neoantigens in peripheral blood mononuclear cells collected after immunotherapy, and the preferential reactivity to mutant peptides compared with corresponding wild-type peptides was also observed for 3 of the neoantigens. Surprisingly, biopsy sample collected from CDC sites after 3 months of immunotherapy showed decreased mutant allele frequency corresponding to 92% (12/13) of the neoantigens, indicating the elimination of tumor cells carrying these neoantigens.Conclusions Our case report demonstrated that the combined therapy of neoantigen peptide vaccination and NRT cell infusion showed certain efficacy in this CDC case, even when the patient carried only a relatively low tumor mutation burden. These results indicated that the personalized neoantigen-based immunotherapy was a promising new strategy for advanced CDC.Trial registration number ChiCTR1800017836

    The Biomechanical Study of Extraforaminal Lumbar Interbody Fusion: A Three-Dimensional Finite-Element Analysis

    No full text
    Objective. Finite-element method was used to evaluate biomechanics stability of extraforaminal lumbar interbody fusion (ELIF) under different internal fixation. Methods. The L3–L5 level finite-element model was established to simulate decompression and internal fixation at L4-L5 segment. The intact finite model was treated in accordance with the different internal fixation. The treatment groups were exerted 400 N load and 6 N·m additional force from motion to calculate the angular displacement of L4-L5. Results. The ROMs were smaller in all internal fixation groups than those in the intact model. Furthermore, the ROMs were smaller in ELIF + UPS group than in TLIF + UPS group under all operating conditions, especially left lateral flexion and right rotation. The ROMs were higher in ELIF + UPS group than in TLIF + BPS group. The ROMs of ELIF + UPS + TLFS group were much smaller than those in ELIF + UPS group, and as compared with TLIF + BPS group, there was no significant difference in the range of experimental loading. Discussion. The biomechanical stability of ELIF with unilateral pedicle screw fixation is superior to that of TLIF with unilateral pedicle screw fixation but lower than that of TLIF with bilateral pedicle screws fixation. The stability of ELIF with unilateral fixation can be further improved by supplementing a translaminar facet screw

    Mimics measurement of anatomical indices on two-dimensional extraforaminal lumbar interbody fusion (ELIF) and TLIF multi-planar rendered images.

    No full text
    <p>(A) transverse view of a three-dimensional image; (B) measurement of the distance of the incision to the median line, the depth of the access approach, and the length of the pedicle screw; and (C) measurement of the length of the interbody fusion cage.</p
    corecore