264 research outputs found

    Predicting extreme events from data using deep machine learning : when and where

    Get PDF
    ACKNOWLEDGMENTS The work at Arizona State University was supported by AFOSR under Grant No. FA9550-21-1-0438 and by ONR under Grant No. N00014-21-1-2323. The work at Xi’an Jiaotong University was supported by the National Key R&D Program of China (Grant No. 2021ZD0201300), National Natural Science Foundation of China (Grant No. 11975178), and K. C. Wong Education Foundation.Peer reviewedPublisher PD

    Predicting tipping points in mutualistic networks through dimension reduction

    Get PDF
    This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1714958115/-/DCSupplemental.Peer reviewedPublisher PD

    MonoNeuralFusion: Online Monocular Neural 3D Reconstruction with Geometric Priors

    Full text link
    High-fidelity 3D scene reconstruction from monocular videos continues to be challenging, especially for complete and fine-grained geometry reconstruction. The previous 3D reconstruction approaches with neural implicit representations have shown a promising ability for complete scene reconstruction, while their results are often over-smooth and lack enough geometric details. This paper introduces a novel neural implicit scene representation with volume rendering for high-fidelity online 3D scene reconstruction from monocular videos. For fine-grained reconstruction, our key insight is to incorporate geometric priors into both the neural implicit scene representation and neural volume rendering, thus leading to an effective geometry learning mechanism based on volume rendering optimization. Benefiting from this, we present MonoNeuralFusion to perform the online neural 3D reconstruction from monocular videos, by which the 3D scene geometry is efficiently generated and optimized during the on-the-fly 3D monocular scanning. The extensive comparisons with state-of-the-art approaches show that our MonoNeuralFusion consistently generates much better complete and fine-grained reconstruction results, both quantitatively and qualitatively.Comment: 12 pages, 12 figure

    Teleost TRAF7, a protein functions in the host antiviral responses via NF-κB and IRF3/7 mediated signaling

    Get PDF
    Tumor necrosis factor receptor-associated factors (TRAFs) play vital roles in tumor necrosis factor receptor (TNF-R) and interleukin-1 receptor/Toll-like receptor (IL-1R/TLR) mediated signaling pathway. However, the role that TRAF7 plays in the host immune responses is largely unknown in comparison to the extensive and in-depth research that has been conducted on other members of the TRAF family. Notably, Lc-TRAF7, a cloned TRAF7 ortholog, was discovered in the large yellow croaker (Larimichthys crocea) in the current study, which has an open reading frame (ORF) of 1,962 base pairs and encodes a protein of 653 amino acids (aa). Lc-TRAF7 is consisted of a RING finger domain, a coiled-coil domain, and seven WD40 domains, with the genomic organization consisted of 20 exons and 19 introns. According to the expression analysis, Lc-TRAF7 was presented in a wide range of detected organs and tissues of the healthy fish, and was able to significantly induced by stimulations of poly I:C, LPS, PGN, and Pseudomonas plecoglossicida infection. Subcellular distribution analysis revealed that Lc-TRAF7 was a cytoplasmic protein, with the RING finger and coiled-coil domain function importantly in its subcellular localization. Luciferase assays demonstrated that Lc-TRAF7 overexpression significantly induced the activation of NF-κB, IRF3, IRF7, and IFN1 promoters. In addition, the WD40 domains play a pivotal role in the NF-κB promoter activation, whereas the RING finger and coiled-coil domain were essential in the IRF3, IRF7, and IFN1 promoter activation. Notably, Lc-TRAF7 overexpression could suppress SVCV proliferation in EPC cells, and the expression levels of IRF3, IRF7, ISG15, ISG56, RSAD2, and TNF-α were up-regulated under Lc-TRAF7 overexpression in LYCMS cells. These findings collectively implied that Lc-TRAF7 may function as an important regulator in the host antiviral responses via the NF-κB as well as IRF3/7 involved signaling pathways

    Targeting USP1-dependent KDM4A protein stability as a potential prostate cancer therapy

    Get PDF
    The histone demethylase lysine-specific demethylase 4A (KDM4A) is reported to be overexpressed and plays a vital in multiple cancers through controlling gene expression by epigenetic regulation of H3K9 or H3K36 methylation marks. However, the biological role and mechanism of KDM4A in prostate cancer (PC) remain unclear. Herein, we reported KDM4A expression was upregulation in phosphatase and tensin homolog knockout mouse prostate tissue. Depletion of KDM4A in PC cells inhibited their proliferation and survival in vivo and vitro. Further studies reveal that USP1 is a deubiquitinase that regulates KDM4A K48-linked deubiquitin and stability. Interestingly, we found c-Myc was a key downstream effector of the USP1-KDM4A/androgen receptor axis in driving PC cell proliferation. Notably, upregulation of KDM4A expression with high USP1 expression was observed in most prostate tumors and inhibition of USP1 promotes PC cells response to therapeutic agent enzalutamide. Our studies propose USP1 could be an anticancer therapeutic target in PC

    Towards Al3+-Induced Manganese-Containing Superoxide Dismutase Inactivation and Conformational Changes: An Integrating Study with Docking Simulations

    Get PDF
    Superoxide dismutase (SOD, EC 1.15.1.1) plays an important antioxidant defense role in skins exposed to oxygen. We studied the inhibitory effects of Al3+ on the activity and conformation of manganese-containing SOD (Mn-SOD). Mn-SOD was significantly inactivated by Al3+ in a dose-dependent manner. The kinetic studies showed that Al3+ inactivated Mn-SOD follows the first-order reaction. Al3+ increased the degree of secondary structure of Mn-SOD and also disrupted the tertiary structure of Mn-SOD, which directly resulted in enzyme inactivation. We further simulated the docking between Mn-SOD and Al3+ (binding energy for Dock 6.3: −14.07 kcal/mol) and suggested that ASP152 and GLU157 residues were predicted to interact with Al3+, which are not located in the Mn-contained active site. Our results provide insight into the inactivation of Mn-SOD during unfolding in the presence of Al3+ and allow us to describe a ligand binding via inhibition kinetics combined with the computational prediction

    Researches on Heat Pump System using Rotary Compressor in Electric Vehicle

    Get PDF
    In China, electric vehicles (EVs) are becoming increasing popular. With several years practical operation experiences, a lot of news reports reveal the existing electrical supplementary heating can dramatically impact the driving range of EVs under cold weather in north China. The high efficient electric heat pump system has become the research hotspot, but previous research show the heat pump operation could supply adequate heating capacity only in mild weather conditions when the working fluid is R134a. Since the user can’t change environment temperature, choose a high pressure working fluid to have better heating performance become a realistic choice. Now the aluminum scroll compressor is wildly used in EVs, but because of the material and structure, it can’t endure the long term high pressure operation. This paper adopted the low cost steel rotary compressor and high pressure working fluid to build the EV heat pump system. The heat pump cycles using R134a, R407c and R290 have been theoretically analyzed; the rotary compressor has been redesigned to respectively apply the R134a, R407c and R290; the heat pump test rig has been build; three combinations (compressor, oil and working fluid) under the same cold weather conditions have been experimentally researched. Results showed the rotary compressor with the high pressure working fluid applied system can generate adequate heating capacity with less energy

    Comparative Transcriptome Analysis Reveals the Biocontrol Mechanism of Bacillus velezensis F21 Against Fusarium Wilt on Watermelon

    Get PDF
    The watermelon (Citrullus lanatus) is one of the most important horticultural crops for fruit production worldwide. However, the production of watermelon is seriously restricted by one kind of soilborne disease, Fusarium wilt, which is caused by Fusarium oxysporum f. sp. niveum (Fon). In this study, we identified an efficient PGPR strain B. velezensis F21, which could be used in watermelon production for Fon control. The results of biocontrol mechanisms showed that B. velezensis F21 could suppress the growth and spore germination of Fon in vitro. Moreover, B. velezensis F21 could also enhance plant basal immunity to Fon by increasing the expression of plant defense related genes and activities of some defense enzymes, such as CAT, POD, and SOD. To elucidate the detailed mechanisms regulating B. velezensis F21 biocontrol of Fusarium wilt in watermelon, a comparative transcriptome analysis using watermelon plant roots treated with B. velezensis F21 or sterile water alone and in combination with Fon inoculation was conducted. The transcriptome sequencing results revealed almost one thousand ripening-related differentially expressed genes (DEGs) in the process of B. velezensis F21 triggering ISR (induced systemic resistance) to Fon. In addition, the Gene Ontology (GO) classification and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment indicated that numerous of transcription factors (TFs) and plant disease resistance genes were activated and validated by using quantitative real-time PCR (qRT-PCR), which showed significant differences in expression levels in the roots of watermelon with different treatments. In addition, genes involved in the MAPK signaling pathway and phytohormone signaling pathway were analyzed, and the results indicated that B. velezensis F21 could enhance plant disease resistance to Fon through the above related genes and phytohormone signal factors. Taken together, this study substantially expands transcriptome data resources and suggests a molecular framework for B. velezensis F21 inducing systemic resistance to Fon in watermelon. In addition, it also provides an effective strategy for the control of Fusarium wilt in watermelon
    corecore