1,064 research outputs found

    Preparation and Characterization of Antibacterial Polypropylene Meshes with Covalently Incorporated β-Cyclodextrins and Captured Antimicrobial Agent for Hernia Repair.

    Get PDF
    Polypropylene (PP) light weight meshes are commonly used as hernioplasty implants. Nevertheless, the growth of bacteria within textile knitted mesh intersections can occur after surgical mesh implantation, causing infections. Thus, bacterial reproduction has to be stopped in the very early stage of mesh implantation. Herein, novel antimicrobial PP meshes grafted with β-CD and complexes with triclosan were prepared for mesh infection prevention. Initially, PP mesh surfaces were functionalized with suitable cold oxygen plasma. Then, hexamethylene diisocyanate (HDI) was successfully grafted on the plasma-activated PP surfaces. Afterwards, β-CD was connected with the already HDI reacted PP meshes and triclosan, serving as a model antimicrobial agent, was loaded into the cyclodextrin (CD) cavity for desired antibacterial functions. The hydrophobic interior and hydrophilic exterior of β-CD are well suited to form complexes with hydrophobic host guest molecules. Thus, the prepared PP mesh samples, CD-TCL-2 and CD-TCL-6 demonstrated excellent antibacterial properties against Staphylococcus aureus and Escherichia coli that were sustained up to 11 and 13 days, respectively. The surfaces of chemically modified PP meshes showed dramatically reduced water contact angles. Moreover, X-ray diffractometer (XRD), differential scanning calorimeter (DSC), and Thermogravimetric (TGA) evidenced that there was no significant effect of grafted hexamethylene diisocyanate (HDI) and CD on the structural and thermal properties of the PP meshes

    Controlled Levofloxacin Release and Antibacterial Properties of β-Cyclodextrins-Grafted Polypropylene Mesh Devices for Hernia Repair.

    Get PDF
    Mesh infection is a major complication of hernia repair. After knitted mesh implantation, bacteria can grow within textile structures causing infection. In this work, polypropylene (PP) mesh devices were two-step grafted with hexamethylene diisocyanate (HDI) and β⁻cyclodexrins (CD) and then loaded with suitable antimicrobial levofloxacin HCL for hernia mesh-infection prevention. First, oxygen plasma was able to create surface roughness, then HDI was successfully grafted onto PP fiber surfaces. Afterwards, CD was covalently grafted onto the HDI treated PP meshes, and levofloxacin HCL (LVFX) was loaded into the CD cavity of the modified meshes. The modified devices were evaluated for sustained antibiotic properties and drug-release profiles in a phosphate buffer, and sustained drug release was observed between interfaces of meshes and aqueous environment. The antibiotic-loaded PP mesh samples demonstrated sustained antibacterial properties for 7 and 10 days, respectively, against both Gram-negative and Gram-positive bacteria. The CD-captured levofloxacin HCL showed burst release after 6 h but later exhibited sustained release for the next 48 h. Among all samples, the modified mesh LVFX-6 was more stable and showed more sustained drug release and could be employed in future clinical applications

    IterativePFN: True Iterative Point Cloud Filtering

    Full text link
    The quality of point clouds is often limited by noise introduced during their capture process. Consequently, a fundamental 3D vision task is the removal of noise, known as point cloud filtering or denoising. State-of-the-art learning based methods focus on training neural networks to infer filtered displacements and directly shift noisy points onto the underlying clean surfaces. In high noise conditions, they iterate the filtering process. However, this iterative filtering is only done at test time and is less effective at ensuring points converge quickly onto the clean surfaces. We propose IterativePFN (iterative point cloud filtering network), which consists of multiple IterationModules that model the true iterative filtering process internally, within a single network. We train our IterativePFN network using a novel loss function that utilizes an adaptive ground truth target at each iteration to capture the relationship between intermediate filtering results during training. This ensures that the filtered results converge faster to the clean surfaces. Our method is able to obtain better performance compared to state-of-the-art methods. The source code can be found at: https://github.com/ddsediri/IterativePFN.Comment: This paper has been accepted to the IEEE/CVF CVPR Conference, 202

    Metal Ions Stabilize a Dimeric Molten Globule State between the Open and Closed Forms of Malic Enzyme

    Get PDF
    AbstractMalic enzyme is a tetrameric protein with double dimer quaternary structure. In 3–5M urea, the pigeon cytosolic NADP+-dependent malic enzyme unfolded and aggregated into various forms with dimers as the basic unit. Under the same denaturing conditions but in the presence of 4mM Mn2+, the enzyme existed exclusively as a molten globule dimer in solution. Similar to pigeon enzyme (Chang, G. G., T. M. Huang, and T. C. Chang. 1988. Biochem. J. 254:123–130), the human mitochondrial NAD+-dependent malic enzyme also underwent a reversible tetramer-dimer-monomer quaternary structural change in an acidic pH environment, which resulted in a molten globule state that is also prone to aggregate. The aggregation of pigeon enzyme was attributable to Trp-572 side chain. Mutation of Trp-572 to Phe, His, Ile, Ser, or Ala abolished the protective effect of the metal ions. The cytosolic malic enzyme was completely digested within 2h by trypsin. In the presence of Mn2+, a specific cutting site in the Lys-352-Gly-Arg-354 region was able to generate a unique polypeptide with Mr of 37kDa, and this polypeptide was resistant to further digestion. These results indicate that, during the catalytic process of malic enzyme, binding metal ion induces a conformational change within the enzyme from the open form to an intermediate form, which upon binding of L-malate, transforms further into a catalytically competent closed form

    A study of the inclusion complex formed between cucurbit[8]uril and isonicotinic acid

    Get PDF
    The complexation between cucurbit[8]uril, Q[8], and isonicotinic acid has been studied using 1H NMR spectroscopy, UV–Vis absorption spectroscopy, Raman spectroscopy and single crystal X-ray diffraction. The results revealed that the 2:1 inclusion complex (4-PA)2@Q[8]·25H2O is formed, with two guests simultaneously encapsulated in the hydrophobic cavity; the mean planes of the guests are 3.535 Å apart. Graphical abstract: [Figure not available: see fulltext.

    Upregulation of Heme Oxygenase-1 Endues Immature Dendritic Cells With More Potent and Durable Immunoregulatory Properties and Promotes Engraftment in a Stringent Mouse Cardiac Allotransplant Model

    Get PDF
    Heme oxygenase-1 (HO-1) is critical for the ability of immature dendritic cells (imDCs) to suppress T-cell responses. Induction of high HO-1 expression may markedly improve the tolerogenic capacity of imDCs. Here, we generated bone marrow-derived DCs (BMDCs) from BALB/c mice with low doses of GM-CSF and IL-4. The adherent BMDCs were obtained as imDCs. Upregulation of HO-1 in imDCs (HO-1hi-imDCs) was achieved by cobalt protoporphyrin treatment. HO-1hi-imDCs proved to be more maturation-resistant than conventional imDCs, with an enhanced ability to inhibit allogeneic T-cell proliferation stimulated by anti-CD3/CD28 antibodies. When donor-derived DC adoptive transfer was performed in a stringent mouse cardiac allotransplant model, the extent of graft prolongation observed with HO-1hi imDCs was superior to that obtained with conventional imDCs. T-cell activation and proliferation in cardiac allograft recipients was more strongly suppressed in the HO-1hi imDC transfusion group than that in the untreated imDC group. Furthermore, donor HO-1hi imDCs were able to maintain a status of high HO-1 expression and survived longer in the recipient spleens than did untreated imDCs after adoptive transfer. In vitro-generated HO-1hi imDCs had an enhanced tolerogenic capacity to modulate alloimmune responses both in vitro and in vivo, and thus may offer a novel antigen-specific and cost-effective strategy to induce transplant tolerance

    Experimental quantum advantage with quantum coupon collector

    Full text link
    An increasing number of communication and computational schemes with quantum advantages have recently been proposed, which implies that quantum technology has fertile application prospects. However, demonstrating these schemes experimentally continues to be a central challenge because of the difficulty in preparing high-dimensional states or highly entangled states. In this study, we introduce and analyse a quantum coupon collector protocol by employing coherent states and simple linear optical elements, which was successfully demonstrated using realistic experimental equipment. We showed that our protocol can significantly reduce the number of samples needed to learn a specific set compared with the classical limit of the coupon collector problem. We also discuss the potential values and expansions of the quantum coupon collector by constructing a quantum blind box game. The information transmitted by the proposed game also broke the classical limit. These results strongly prove the advantages of quantum mechanics in machine learning and communication complexity.Comment: 10 pages, 3 figures, 3 tables, Accepted by Researc
    corecore