26 research outputs found
Osseous wound repair under inhibition of the axis of advanced glycation end-products and the advanced glycation end-products receptor
Background/PurposeBlockade of advanced glycation end-products (AGE) is able to reduce diabetic complications and control periodontitis. This study aimed to determine whether the application of aminoguanidine (AG), an AGE inhibitor, or N-phenacylthiazolium bromide (PTB), an AGE breaker, facilitates the healing of an osseous wound in non-diabetic animals.Methods2.6 mm diameter full-thickness osseous wounds were created bilaterally in 54 healthy Sprague–Dawley rats. Rats received daily normal saline, AG, or PTB injections respectively and were euthanized after 7 days, 14 days, or 28 days (n = 6). The wound healing pattern was assessed by micro-computed tomography, histology, histochemistry for the fiber arrangement, and the gene expression levels of AGE receptor, tumor necrosis factor-α, type I collagen, and fibronectin.ResultsUnder the AG and PTB administration, osteogenesis was apparently promoted in the early stages of healing, but the union of the osseous wound and the fibril re-arrangement was apparently retarded. No significant difference was found in any of the micro-computed tomography parameters as compared to the control in the first 14 days, whereas the relative bone volume was significantly higher in the control at Day 28. AGE receptor and tumor necrosis factor-α were depressed in the PTB group, but only temporarily at Day 14 in the AG group. Therefore, at Day 14, type I collagen was significantly upregulated in the PTB group, and fibronectin was significantly increased in the AG group.ConclusionAnti-AGE agents reduced inflammation but did not apparently facilitate osteogenesis during the osseous wound repair
TIPdb: a database of anticancer, antiplatelet, and antituberculosis phytochemicals from indigenous plants in Taiwan
The unique geographic features of Taiwan are attributed to the rich indigenous and endemic plant species in Taiwan. These plants serve as resourceful bank for biologically active phytochemicals. Given that these plant-derived chemicals are prototypes of potential drugs for diseases, databases connecting the chemical structures and pharmacological activities may facilitate drug development. To enhance the utility of the data, it is desirable to develop a database of chemical compounds and corresponding activities from indigenous plants in Taiwan. A database of anticancer, antiplatelet, and antituberculosis phytochemicals from indigenous plants in Taiwan was constructed. The database, TIPdb, is composed of a standardized format of published anticancer, antiplatelet, and antituberculosis phytochemicals from indigenous plants in Taiwan. A browse function was implemented for users to browse the database in a taxonomy-based manner. Search functions can be utilized to filter records of interest by botanical name, part, chemical class, or compound name. The structured and searchable database TIPdb was constructed to serve as a comprehensive and standardized resource for anticancer, antiplatelet, and antituberculosis compounds search. The manually curated chemical structures and activities provide a great opportunity to develop quantitative structure-activity relationship models for the highthroughput screening of potential anticancer, antiplatelet, and antituberculosis drugs
Association of vitamin D deficiency with post-stroke depression: a retrospective cohort study from the TriNetX US collaborative networks
BackgroundPost-stroke depression (PSD) affects up to one-third of patients who survive stroke. This matched cohort study aimed to investigate the relationship between vitamin D deficiency (VDD) and PSD using a global health research network.MethodsAdult patients with first-ever stroke were eligible for inclusion if their circulating vitamin D levels were available within 3 months before the onset of stroke. Patients were subdivided into those with VDD [VDD group, 25(OH) D < 20 ng/mL] and those with normal vitamin D levels [control group, 25(OH) D: 30–80 ng/mL]. By using propensity score matching (PSM), potential confounding factors were adjusted. The primary outcomes were the association of VDD with the risk of PSD at the 3-month and 12-month follow-ups, while the secondary outcomes were the relationships between VDD and the risk of pneumonia as well as emergency department visits at the 12-month follow-up.ResultsAfter PSM, 758 individuals were included in each group, with no significant differences in baseline characteristics. Musculoskeletal diseases, metabolic disorders, and hypertension were the three leading comorbidities in both the groups. The incidence of PSD was not significantly different between the two groups at the 3-month (5.8% vs. 4.7%, p = 0.358) and 12-month (11.6% vs. 10.2%, p = 0.364) follow-up. VDD was not associated with an increased risk of PSD at the 3-month [hazard ratio (HR) = 1.258, p = 0.358] or 12-month follow-up (HR = 1.210, p = 0.364). In addition, VDD was not associated with an increased risk of pneumonia (HR = 1.053, p = 0.823) or emergency visits at the 12-month follow-up (HR = 1.206, p = 0.148).ConclusionThe results revealed no significant link between VDD and PSD risk during the 3-month and 12-month follow-up periods, suggesting that VDD might not play a substantial role in PSD risk. However, further extensive studies employing a prospective design are necessary to explore the potential protective effects of vitamin D against PSD and validate these findings
The Time-Temperature Superposition for SMA Mixtures under Confining Pressure in Compressive Loading
時間與溫度間對瀝青混凝土黏彈性行為有極大關係,根據國外的研究,在線性黏彈性狀態下的瀝青混凝土,低溫的受力行為與短時間(高頻率)荷重相似,而高溫的受力行為與長時間(低頻率)荷重相似,此種材料即為一種熱流變單純 (thermorheologically simple, TRS) 物質。因此,瀝青混凝土在未受破壞的線性黏彈性力學行為可以透過時間溫度疊加(time-temperature superposition)特性,進行時間和溫度的等值互換。
本研究採用AC-20瀝青膠泥,添加橡膠粉末改質劑與礦物纖維添加劑,搭配粗型與細型SMA級配,拌製成最佳含油量OAC,以及OAC 0.5%三種含油量的SMA瀝青混凝土試體後,在不同圍壓、不同溫度、不同荷重頻率的環境下,進行動態模數試驗。將不同溫度下的動態模數曲線經過平移而趨近重合,找到時間溫度橫移因子aT,同時迴歸出動態模數主曲線。接著進行反覆正弦波軸差荷重試驗,應用aT值將不同溫度的應變曲線延展,結果證明時間溫度疊加特性適用於SMA試體受壓進入到破壞變形或黏塑性階段。
動態模數主曲線與永久應變主曲線的實驗結果比較皆顯示,添加廢輪胎橡膠粉末,無論採用何種型式SMA級配,以何種含油量拌製成石膠泥瀝青混凝土試體,在相同圍壓下,SMA試體的動態模數主曲線較高,反覆荷重試驗顯示到達破壞所需簡化時間也較長,即表示有較佳抗車轍能力。實驗結果亦顯示,無論添加廢輪胎橡膠粉末或礦物纖維,採用細型SMA,在含油量OAC-0.5%及高圍壓下均有較高的動態模數主曲線,而反覆荷重試驗數據亦證明該些試體均較其他型式之組合有較佳抗車轍性能。目錄
摘要…Ⅰ
目錄…Ⅱ
表目錄…Ⅴ
圖目錄…Ⅵ
第一章 緒論 1
1-1 前言 1
1-2 研究動機 2
1-3 研究目的 3
1-4 研究範圍與架構 3
第二章 文獻回顧 5
2-1 石膠泥瀝青混凝土簡介 5
2-1-1 石膠泥瀝青混凝土之結構特性 5
2-1-2 石膠泥瀝青混凝土之材料特性 6
2-2 石膠泥瀝青混凝土之設計方法 8
2-2-1 馬歇爾配合設計方法 9
2-2-2 NCAT建議之SMA配合設計方法 11
2-3 橡膠瀝青(Asphalt Rubber) 15
2-3-1 橡膠瀝青反應機制 15
2-3-2 橡膠改質劑對瀝青膠泥的改質效果 16
2-3-3 橡膠在瀝青混凝土鋪面的應用 17
2-4 動態模數(dynamic modulus)試驗 19
2-4-1 動態模數 19
2-4-2 相位角 20
2-5 時間-溫度疊加特性 22
2-6 時間溫度疊加在大應變下的適用性 26
第三章 研究計畫與試驗方法 29
3-1 研究流程 29
3-2 試驗材料 31
3-2-1 粒料 31
3-2-2 瀝青膠泥 31
3-2-3 礦物填充料 31
3-2-4 纖維添加劑 32
3-2-5 橡膠粉末改質劑(CRM) 32
3-3 粒料基本物性試驗 32
3-3-1 粗、細粒料比重及吸水率 32
3-3-2 填縫料比重 33
3-3-3 粗粒料洛杉磯磨損率 33
3-3-4 粒料扁長率 33
3-3-5 含砂當量 33
3-3-6 破碎面 34
3-3-7 健性試驗 35
3-4 瀝青基本物性試驗 36
3-4-1 針入度 36
3-4-2 瀝青比重 36
3-4-3 瀝青膠泥黏滯度 36
3-4-4 軟化點 37
3-4-5 閃火點與燃燒點 38
3-4-6 延展性 38
3-4-7 滾動薄膜烘箱 38
3-4-8 橡膠瀝青拌製 39
3-4-9 橡膠瀝青黏滯度量測 39
3-5 SMA配合設計 42
3-5-1 粒料級配 42
3-5-2 決定最佳含油量OAC 45
3-5-3 垂流量試驗 47
3-5-4 檢驗粗骨材架構 47
3-6 圓柱試體製作方法 48
3-7 動態模數試驗 51
3-8 反覆正弦波荷重試驗 53
第四章 試驗結果與討論 54
4-1 動態模數試驗結果分析 54
4-2 相位角分析 55
4-3 反覆正弦波荷重試驗結果 56
4-4 不同試驗因素對瀝青混凝土抗車轍之影響 57
第五章 結論 114
參考文獻 116
表目錄
表2.1 粗粒料性質規範 7
表2.2 AASHTO建議之SMA級配 11
表2.3 不同虛比重的骨材拌製SMA的最小瀝青含量規定 12
表3.1 石粉篩分析 31
表3.2 粒料比重及吸水率 35
表3.3 骨材物性試驗結果 36
表3.4 AC-20不同溫度下的黏滯度 37
表3.5 AC-20瀝青膠泥物性試驗 41
表3.6 橡膠瀝青物性試驗結果與ASTM D6114規範比較 42
表3.7 細型SMA粒料級配 43
表3.8 粗型SMA粒料級配 43
表3.9 馬歇爾配合設計結果 47
表3.10 檢驗SMA骨架 48
表4.1 不同溫度、頻率之動態模數(圍壓15psi) 59
表4.2 不同溫度、頻率之動態模數(圍壓30psi) 60
表4.3 不同溫度、頻率之相位角(圍壓15psi) 61
表4.4 不同溫度、頻率之相位角(圍壓30psi) 62
表4.5 反覆荷重下SMA試體的永久應變達3%所需時間 63
圖目錄
圖1.1 研究架構圖 4
圖2.1 VMA、VCAMIX、VCADRC示意圖 14
圖2.2 動態模數之應力時間關係圖及應變時間關係圖 20
圖2.3 時間溫度疊加示意圖(Kim等人,2003) 24
圖2.4 溫度與aT關係圖(Kim等人,2003) 24
圖2.5 繪製主曲線過程圖(Schwartz等人,2002) 28
圖3.1 研究流程圖 30
圖3.2 廢輪胎橡膠粉末與礦物纖維 32
圖3.3 比例卡尺量測扁長率 34
圖3.4 含砂當量搖動架 34
圖3.5 AC-20瀝青膠泥溫感曲線 37
圖3.6 高轉速拌合機與控溫系統 40
圖3.7 HB-3號轉子與黏度儀 40
圖3.8 量測橡膠瀝青黏滯度儀器配置圖 40
圖3.9 SMA細型級配粒徑分佈圖 44
圖3.10 SMA粗型級配粒徑分佈圖 44
圖3.11 Superpave旋轉揉壓機(SGC) 49
圖3.12 圓柱試體鑽心前後 50
圖3.13 圓柱試體製作流程 50
圖3.14 LVDT在試體中央 51
圖3.15 試驗溫度控制室 51
圖3.16 動態模數試驗流程 52
圖3.17 反覆正弦波荷重試驗流程 53
圖4.1 SMA試體破壞後形狀圖 63
圖4.2(a) 不同加載時間、溫度下所對應之|E*|值(圍壓15psi,礦物纖維,粗型SMA,OAC+0.5) 64
圖4.2(b) 溫度與橫移因子aT之關係曲線圖(圍壓15psi,礦物纖維,粗型SMA,OAC+0.5) 64
圖4.2(c) 動態模數主曲線(圍壓15psi,礦物纖維,粗型SMA,OAC+0.5) 64
圖4.3(a) 不同加載時間、溫度下所對應之|E*|值(圍壓15psi,礦物纖維,粗型SMA,OAC) 65
圖4.3(b) 溫度與橫移因子aT之關係曲線圖(圍壓15psi,礦物纖維,粗型SMA,OAC) 65
圖4.3(c) 動態模數主曲線(圍壓15psi,礦物纖維,粗型SMA,OAC) 65
圖4.4(a) 不同加載時間、溫度下所對應之|E*|值(圍壓15psi,礦物纖維,粗型SMA,OAC-0.5) 66
圖4.4(b) 溫度與橫移因子aT之關係曲線圖(圍壓15psi,礦物纖維,粗型SMA,OAC-0.5) 66
圖4.4(c) 動態模數主曲線(圍壓15psi,礦物纖維,粗型SMA,OAC-0.5) 66
圖4.5(a) 不同加載時間、溫度下所對應之|E*|值(圍壓15psi,礦物纖維,細型SMA,OAC+0.5) 67
圖4.5(b) 溫度與橫移因子aT之關係曲線圖(圍壓15psi,礦物纖維,細型SMA,OAC+0.5) 67
圖4.5(c) 動態模數主曲線(圍壓15psi,礦物纖維,細型SMA,OAC+0.5) 67
圖4.6(a) 不同加載時間、溫度下所對應之|E*|值(圍壓15psi,礦物纖維,細型SMA,OAC) 68
圖4.6(b) 溫度與橫移因子aT之關係曲線圖(圍壓15psi,礦物纖維,細型SMA,OAC) 68
圖4.6(c) 動態模數主曲線(圍壓15psi,礦物纖維,細型SMA,OAC) 68
圖4.7(a) 不同加載時間、溫度下所對應之|E*|值(圍壓15psi,礦物纖維,細型SMA,OAC-0.5) 69
圖4.7(b) 溫度與橫移因子aT之關係曲線圖(圍壓15psi,礦物纖維,細型SMA,OAC-0.5) 69
圖4.7(c) 動態模數主曲線(圍壓15psi,礦物纖維,細型SMA,OAC-0.5) 69
圖4.8(a) 不同加載時間、溫度下所對應之|E*|值(圍壓15psi,橡膠粉末,粗型SMA,OAC+0.5) 70
圖4.8(b) 溫度與橫移因子aT之關係曲線圖(圍壓15psi,橡膠粉末,粗型SMA,OAC+0.5) 70
圖4.8(c) 動態模數主曲線(圍壓15psi,橡膠粉末,粗型SMA,OAC+0.5) 70
圖4.9(a) 不同加載時間、溫度下所對應之|E*|值(圍壓15psi,橡膠粉末,粗型SMA,OAC) 71
圖4.9(b) 溫度與橫移因子aT之關係曲線圖(圍壓15psi,橡膠粉末,粗型SMA,OAC) 71
圖4.9(c) 動態模數主曲線(圍壓15psi,橡膠粉末,粗型SMA,OAC) 71
圖4.10(a) 不同加載時間、溫度下所對應之|E*|值(圍壓15psi,橡膠粉末,粗型SMA,OAC-0.5) 72
圖4.10(b) 溫度與橫移因子aT之關係曲線圖(圍壓15psi,橡膠粉末,粗型SMA,OAC-0.5) 72
圖4.10(c) 動態模數主曲線(圍壓15psi,橡膠粉末,粗型SMA,OAC-0.5) 72
圖4.11(a) 不同加載時間、溫度下所對應之|E*|值(圍壓15psi,橡膠粉末,細型SMA,OAC+0.5) 73
圖4.11(b) 溫度與橫移因子aT之關係曲線圖(圍壓15psi,橡膠粉末,細型SMA,OAC+0.5) 73
圖4.11(c) 動態模數主曲線(圍壓15psi,橡膠粉末,細型SMA,OAC+0.5) 73
圖4.12(a) 不同加載時間、溫度下所對應之|E*|值(圍壓15psi,橡膠粉末,細型SMA,OAC) 74
圖4.12(b) 溫度與橫移因子aT之關係曲線圖(圍壓15psi,橡膠粉末,細型SMA,OAC) 74
圖4.12(c) 動態模數主曲線(圍壓15psi,橡膠粉末,細型SMA,OAC) 74
圖4.13(a) 不同加載時間、溫度下所對應之|E*|值(圍壓15psi,橡膠粉末,細型SMA,OAC-0.5) 75
圖4.13(b) 溫度與橫移因子aT之關係曲線圖(圍壓15psi,橡膠粉末,細型SMA,OAC-0.5) 75
圖4.13(c) 動態模數主曲線(圍壓15psi,橡膠粉末,細型SMA,OAC-0.5) 75
圖4.14(a) 不同加載時間、溫度下所對應之|E*|值(圍壓30psi,礦物纖維,粗型SMA,OAC+0.5) 76
圖4.14(b) 溫度與橫移因子aT之關係曲線圖(圍壓30psi,礦物纖維,粗型SMA,OAC+0.5) 76
圖4.14(c) 動態模數主曲線(圍壓30psi,礦物纖維,粗型SMA,OAC+0.5) 76
圖4.15(a) 不同加載時間、溫度下所對應之|E*|值(圍壓30psi,礦物纖維,粗型SMA,OAC) 77
圖4.15(b) 溫度與橫移因子aT之關係曲線圖(圍壓30psi,礦物纖維,粗型SMA,OAC) 77
圖4.15(c) 動態模數主曲線(圍壓30psi,礦物纖維,粗型SMA,OAC) 77
圖4.16(a) 不同加載時間、溫度下所對應之|E*|值(圍壓30psi,礦物纖維,粗型SMA,OAC-0.5) 78
圖4.16(b) 溫度與橫移因子aT之關係曲線圖(圍壓30psi,礦物纖維,粗型SMA,OAC-0.5) 78
圖4.16(c) 動態模數主曲線(圍壓30psi,礦物纖維,粗型SMA,OAC-0.5) 78
圖4.17(b) 溫度與橫移因子aT之關係曲線圖(圍壓30psi,礦物纖維,細型SMA,OAC+0.5) 79
圖4.17(c) 動態模數主曲線(圍壓30psi,礦物纖維,細型SMA,OAC+0.5) 79
圖4.18(a) 不同加載時間、溫度下所對應之|E*|值(圍壓30psi,礦物纖維,細型SMA,OAC) 80
圖4.18(b) 溫度與橫移因子aT之關係曲線圖(圍壓30psi,礦物纖維,細型SMA,OAC) 80
圖4.18(c) 動態模數主曲線(圍壓30psi,礦物纖維,細型SMA,OAC) 80
圖4.19(a) 不同加載時間、溫度下所對應之|E*|值(圍壓30psi,礦物纖維,細型SMA,OAC-0.5) 81
圖4.19(b) 溫度與橫移因子aT之關係曲線圖(圍壓30psi,礦物纖維,細型SMA,OAC-0.5) 81
圖4.19(c) 動態模數主曲線(圍壓30psi,礦物纖維,細型SMA,OAC-0.5) 81
圖4.20(a) 不同加載時間、溫度下所對應之|E*|值(圍壓30psi,橡膠粉末,粗型SMA,OAC+0.5) 82
圖4.20(b) 溫度與橫移因子aT之關係曲線圖(圍壓30psi,橡膠粉末,粗型SMA,OAC+0.5) 82
圖4.20(c) 動態模數主曲線(圍壓30psi,橡膠粉末,粗型SMA,OAC+0.5) 82
圖4.21(a) 不同加載時間、溫度下所對應之|E*|值(圍壓30psi,橡膠粉末,粗型SMA,OAC) 83
圖4.21(b) 溫度與橫移因子aT之關係曲線圖(圍壓30psi,橡膠粉末,粗型SMA,OAC) 83
圖4.21(c) 動態模數主曲線(圍壓30psi,橡膠粉末,粗型SMA,OAC) 83
圖4.22(a) 不同加載時間、溫度下所對應之|E*|值(圍壓30psi,橡膠粉末,粗型SMA,OAC-0.5) 84
圖4.22(b) 溫度與橫移因子aT之關係曲線圖(圍壓30psi,橡膠粉末,粗型SMA,OAC-0.5) 84
圖4.22(c) 動態模數主曲線(圍壓30psi,橡膠粉末,粗型SMA,OAC-0.5) 84
圖4.23(a) 不同加載時間、溫度下所對應之|E*|值(圍壓30psi,橡膠粉末,細型SMA,OAC+0.5) 85
圖4.23(b) 溫度與橫移因子aT之關係曲線圖(圍壓30psi,橡膠粉末,細型SMA,OAC+0.5) 85
圖4.23(c) 動態模數主曲線(圍壓30psi,橡膠粉末,細型SMA,OAC+0.5) 85
圖4.24(a) 不同加載時間、溫度下所對應之|E*|值(圍壓30psi,橡膠粉末,細型SMA,OAC) 86
圖4.24(b) 溫度與橫移因子aT之關係曲線圖(圍壓30psi,橡膠粉末,細型SMA,OAC) 86
圖4.24(c) 動態模數主曲線(圍壓30psi,橡膠粉末,細型SMA,OAC) 86
圖4.25(a) 不同加載時間、溫度下所對應之|E*|值(圍壓30psi,橡膠粉末,細型SMA,OAC-0.5) 87
圖4.25(b) 溫度與橫移因子aT之關係曲線圖(圍壓30psi,橡膠粉末,細型SMA,OAC-0.5) 87
圖4.25(c) 動態模數主曲線(圍壓30psi,橡膠粉末,細型SMA,OAC-0.5) 87
圖4.26 不同添加物對動態模數主曲線之影響(圍壓15psi) 88
圖4.27 不同添加物對動態模數主曲線之影響(圍壓30psi) 89
圖4.28 不同級配對動態模數主曲線之影響(圍壓15psi) 90
圖4.29 不同級配對動態模數主曲線之影響(圍壓30psi) 91
圖4.30 不同含油量對動態模數主曲線之影響(圍壓15psi) 92
圖4.31 不同含油量對動態模數主曲線之影響(圍壓30psi) 93
圖4.32 不同圍壓對動態模數主曲線之影響(礦物纖維) 94
圖4.33 不同圍壓對動態模數主曲線之影響(橡膠粉末) 95
圖4.34 相位角主曲線(15psi,礦物纖維) 96
圖4.35 相位角主曲線(15psi,橡膠粉末) 97
圖4.36 相位角主曲線(30psi,礦物纖維) 98
圖4.37 相位角主曲線(30psi,橡膠粉末) 99
圖4.38 不同圍壓對相位角主曲線之影響(礦物纖維) 100
圖4.39 不同圍壓對相位角主曲線之影響(橡膠粉末) 101
圖4.40(a) 應變與時間關係圖 (b) 應變與簡化時間關係圖
(圍壓30psi,礦物纖維,粗型SMA,OAC+0.5) 102
圖4.41(a) 應變與時間關係圖 (b) 應變與簡化時間關係圖
(圍壓30psi,礦物纖維,粗型SMA,OAC) 102
圖4.42(a) 應變與時間關係圖 (b) 應變與簡化時間關係圖
(圍壓30psi,礦物纖維,粗型SMA,OAC-0.5) 102
圖4.43(a) 應變與時間關係圖 (b) 應變與簡化時間關係圖
(圍壓30psi,礦物纖維,細型SMA,OAC+0.5) 103
圖4.44(a) 應變與時間關係圖 (b) 應變與簡化時間關係圖
(圍壓30psi,礦物纖維,細型SMA,OAC) 103
圖4.45(a) 應變與時間關係圖 (b) 應變與簡化時間關係圖
(圍壓30psi,礦物纖維,細型SMA,OAC-0.5) 103
圖4.46(a) 應變與時間關係圖 (b) 應變與簡化時間關係圖
(圍壓30psi,橡膠粉末,粗型SMA,OAC+0.5) 104
圖4.47(a) 應變與時間關係圖 (b) 應變與簡化時間關係圖
(圍壓30psi,橡膠粉末,粗型SMA,OAC) 104
圖4.48(a) 應變與時間關係圖 (b) 應變與簡化時間關係圖
(圍壓30psi,橡膠粉末,粗型SMA,OAC-0.5) 104
圖4.49(a) 應變與時間關係圖 (b) 應變與簡化時間關係圖
(圍壓30psi,橡膠粉末,細型SMA,OAC+0.5) 105
圖4.50(a) 應變與時間關係圖 (b) 應變與簡化時間關係圖
(圍壓30psi,橡膠粉末,細型SMA,OAC) 105
圖4.51(a) 應變與時間關係圖 (b) 應變與簡化時間關係圖
(圍壓30psi,橡膠粉末,細型SMA,OAC-0.5) 105
圖4.52 不同添加物對永久變形主曲線之影響(圍壓15psi) 106
圖4.53 不同添加物對永久變形主曲線之影響(圍壓30psi) 107
圖4.54 不同級配對永久變形主曲線之影響(圍壓15psi) 108
圖4.55 不同級配對永久變形主曲線之影響(圍壓30psi) 109
圖4.56 不同含油量對永久變形主曲線之影響(圍壓15psi) 110
圖4.57 不同含油量對永久變形主曲線之影響(圍壓30psi) 111
圖4.58 不同圍壓對永久變形主曲線之影響(礦物纖維) 112
圖4.59 不同圍壓對永久變形主曲線之影響(橡膠粉末) 11
Bis[2-({[2-(methylsulfanyl)phenyl]imino}methyl)phenolato-&#954;2N,O]zinc chloroform disolvate
The monomeric title complex, [Zn(C14H12NOS)2]&#183;2CHCl3 or L2Zn&#183;2CHCl3, where L is the 2-({[2-(methylsulfanyl)phenyl]imino}methyl)phenolate anion, may be obtained by the reaction of LZnEt with benzyl alcohol or by the reaction of two equivalents of LH with ZnEt2 in tetrahydrofuran. The Zn atom, located on a twofold axis, is four-coordinated in a distorted tetrahedral geometry by two O atoms [Zn&#8212;O = 1.9472&#8197;(19)&#8197;&#197;] from the phenolate anions and two imine N atoms [Zn&#8212;N = 2.054&#8197;(2)&#8197;&#197;]
TIPdb: A Database of Anticancer, Antiplatelet, and Antituberculosis Phytochemicals from Indigenous Plants in Taiwan
The unique geographic features of Taiwan are attributed to the rich indigenous and endemic plant species in Taiwan. These plants serve as resourceful bank for biologically active phytochemicals. Given that these plant-derived chemicals are prototypes of potential drugs for diseases, databases connecting the chemical structures and pharmacological activities may facilitate drug development. To enhance the utility of the data, it is desirable to develop a database of chemical compounds and corresponding activities from indigenous plants in Taiwan. A database of anticancer, antiplatelet, and antituberculosis phytochemicals from indigenous plants in Taiwan was constructed. The database, TIPdb, is composed of a standardized format of published anticancer, antiplatelet, and antituberculosis phytochemicals from indigenous plants in Taiwan. A browse function was implemented for users to browse the database in a taxonomy-based manner. Search functions can be utilized to filter records of interest by botanical name, part, chemical class, or compound name. The structured and searchable database TIPdb was constructed to serve as a comprehensive and standardized resource for anticancer, antiplatelet, and antituberculosis compounds search. The manually curated chemical structures and activities provide a great opportunity to develop quantitative structure-activity relationship models for the high-throughput screening of potential anticancer, antiplatelet, and antituberculosis drugs
Unsymmetrical Squaraines Incorporating Quinoline for Near Infrared Responsive Dye-Sensitized Solar Cells
Two new unsymmetrical squaraines (<b>WCH-SQ10</b> and <b>WCH-SQ11</b>), wherein the electron-rich 3,4-ethylenedioxy-thiophene conjugated fragment was linked unconventionally to the squaraine core and triphenyl amine donor, and carboxylic acid substituted quinoline was used as an acceptor, were prepared. <b>WCH-SQ10</b> and <b>WCH-SQ11</b> dyes in ethanol have the λ<sub>max</sub> of 686 and 673 nm, respectively. The corresponding photovoltaic devices exhibit an attractively panchromatic response over 1000 nm, suggesting that quinoline benefits the low energetic electron injection
Olanzapine Induced Dysmetabolic Changes Involving Tissue Chromium Mobilization in Female Rats
Atypical antipsychotics, such as olanzapine, are commonly prescribed to patients with schizophrenic symptoms and other psychiatric disorders. However, weight gain and metabolic disturbance cause adverse effects, impair patient compliance and limit clinical utility. Thus, a better understanding of treatment-acquired adverse effects and identification of targets for therapeutic intervention are believed to offer more clinical benefits for patients with schizophrenia. Beyond its nutritional effects, studies have indicated that supplementation of chromium brings about beneficial outcomes against numerous metabolic disorders. In this study, we investigated whether olanzapine-induced weight gain and metabolic disturbance involved chromium dynamic mobilization in a female Sprague-Dawley rat model, and whether a dietary supplement of chromium improved olanzapine-acquired adverse effects. Olanzapine medicated rats experienced weight gain and adiposity, as well as the development of hyperglycemia, hyperinsulinemia, insulin resistance, hyperlipidemia, and inflammation. The olanzapine-induced metabolic disturbance was accompanied by a decrease in hepatic Akt and AMP-activated Protein Kinase (AMPK) actions, as well as an increase in serum interleukin-6 (IL-6), along with tissue chromium depletion. A daily intake of chromium supplements increased tissue chromium levels and thermogenic uncoupling protein-1 (UCP-1) expression in white adipose tissues, as well as improved both post-olanzapine weight gain and metabolic disturbance. Our findings suggest that olanzapine medicated rats showed a disturbance of tissue chromium homeostasis by inducing tissue depletion and urinary excretion. This loss may be an alternative mechanism responsible for olanzapine-induced weight gain and metabolic disturbance
Olanzapine Induced Dysmetabolic Changes Involving Tissue Chromium Mobilization in Female Rats
Atypical antipsychotics, such as olanzapine, are commonly prescribed to patients with schizophrenic symptoms and other psychiatric disorders. However, weight gain and metabolic disturbance cause adverse effects, impair patient compliance and limit clinical utility. Thus, a better understanding of treatment-acquired adverse effects and identification of targets for therapeutic intervention are believed to offer more clinical benefits for patients with schizophrenia. Beyond its nutritional effects, studies have indicated that supplementation of chromium brings about beneficial outcomes against numerous metabolic disorders. In this study, we investigated whether olanzapine-induced weight gain and metabolic disturbance involved chromium dynamic mobilization in a female Sprague-Dawley rat model, and whether a dietary supplement of chromium improved olanzapine-acquired adverse effects. Olanzapine medicated rats experienced weight gain and adiposity, as well as the development of hyperglycemia, hyperinsulinemia, insulin resistance, hyperlipidemia, and inflammation. The olanzapine-induced metabolic disturbance was accompanied by a decrease in hepatic Akt and AMP-activated Protein Kinase (AMPK) actions, as well as an increase in serum interleukin-6 (IL-6), along with tissue chromium depletion. A daily intake of chromium supplements increased tissue chromium levels and thermogenic uncoupling protein-1 (UCP-1) expression in white adipose tissues, as well as improved both post-olanzapine weight gain and metabolic disturbance. Our findings suggest that olanzapine medicated rats showed a disturbance of tissue chromium homeostasis by inducing tissue depletion and urinary excretion. This loss may be an alternative mechanism responsible for olanzapine-induced weight gain and metabolic disturbance