6,144 research outputs found

    Peak-Dip-Hump from Holographic Superconductivity

    Full text link
    We study the fermionic spectral function in a holographic superconductor model. At zero temperature, the black hole has zero horizon and hence the entropy of the system is zero after the back reaction of the condensate is taken into account. We find the system exhibits the famous peak-dip-hump lineshape with a sharp low-energy peak followed by a dip then a hump at higher energies. This feature is widely observed in the spectrum of several high-T_c superconductors. We also find a linear relation between the gap in the fermionic spectrum and the condensate, indicating the condensate is formed by fermion pairing.Comment: 4 pages, revtex

    A Study of AI Population Dynamics with Million-agent Reinforcement Learning

    Get PDF
    We conduct an empirical study on discovering the ordered collective dynamics obtained by a population of intelligence agents, driven by million-agent reinforcement learning. Our intention is to put intelligent agents into a simulated natural context and verify if the principles developed in the real world could also be used in understanding an artificially-created intelligent population. To achieve this, we simulate a large-scale predator-prey world, where the laws of the world are designed by only the findings or logical equivalence that have been discovered in nature. We endow the agents with the intelligence based on deep reinforcement learning (DRL). In order to scale the population size up to millions agents, a large-scale DRL training platform with redesigned experience buffer is proposed. Our results show that the population dynamics of AI agents, driven only by each agent's individual self-interest, reveals an ordered pattern that is similar to the Lotka-Volterra model studied in population biology. We further discover the emergent behaviors of collective adaptations in studying how the agents' grouping behaviors will change with the environmental resources. Both of the two findings could be explained by the self-organization theory in nature.Comment: Full version of the paper presented at AAMAS 2018 (International Conference on Autonomous Agents and Multiagent Systems

    Product-based Neural Networks for User Response Prediction

    Full text link
    Predicting user responses, such as clicks and conversions, is of great importance and has found its usage in many Web applications including recommender systems, web search and online advertising. The data in those applications is mostly categorical and contains multiple fields; a typical representation is to transform it into a high-dimensional sparse binary feature representation via one-hot encoding. Facing with the extreme sparsity, traditional models may limit their capacity of mining shallow patterns from the data, i.e. low-order feature combinations. Deep models like deep neural networks, on the other hand, cannot be directly applied for the high-dimensional input because of the huge feature space. In this paper, we propose a Product-based Neural Networks (PNN) with an embedding layer to learn a distributed representation of the categorical data, a product layer to capture interactive patterns between inter-field categories, and further fully connected layers to explore high-order feature interactions. Our experimental results on two large-scale real-world ad click datasets demonstrate that PNNs consistently outperform the state-of-the-art models on various metrics.Comment: 6 pages, 5 figures, ICDM201

    Epilepsy: Selenium and Aging

    Get PDF

    A Bayesian measurement error model for two-channel cell-based RNAi data with replicates

    Full text link
    RNA interference (RNAi) is an endogenous cellular process in which small double-stranded RNAs lead to the destruction of mRNAs with complementary nucleoside sequence. With the production of RNAi libraries, large-scale RNAi screening in human cells can be conducted to identify unknown genes involved in a biological pathway. One challenge researchers face is how to deal with the multiple testing issue and the related false positive rate (FDR) and false negative rate (FNR). This paper proposes a Bayesian hierarchical measurement error model for the analysis of data from a two-channel RNAi high-throughput experiment with replicates, in which both the activity of a particular biological pathway and cell viability are monitored and the goal is to identify short hair-pin RNAs (shRNAs) that affect the pathway activity without affecting cell activity. Simulation studies demonstrate the flexibility and robustness of the Bayesian method and the benefits of having replicates in the experiment. This method is illustrated through analyzing the data from a RNAi high-throughput screening that searches for cellular factors affecting HCV replication without affecting cell viability; comparisons of the results from this HCV study and some of those reported in the literature are included.Comment: Published in at http://dx.doi.org/10.1214/11-AOAS496 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Towards A Holographic Model of D-Wave Superconductors

    Full text link
    The holographic model for S-wave high T_c superconductors developed by Hartnoll, Herzog and Horowitz is generalized to describe D-wave superconductors. The 3+1 dimensional gravitational theory consists a symmetric, traceless second-rank tensor field and a U(1) gauge field in the background of the AdS black hole. Below T_c the tensor field which carries the U(1) charge undergoes the Higgs mechanism and breaks the U(1) symmetry of the boundary theory spontaneously. The phase transition characterized by the D-wave condensate is second order with the mean field critical exponent beta = 1/2. As expected, the AC conductivity is isotropic below T_c and the system becomes superconducting in the DC limit but has no hard gap.Comment: 14 pages, 2 figures, Some typos corrected, Matched with the published versio
    corecore