1,613 research outputs found

    Pulse-spacing manipulation in a passively mode-locked multipulse fiber laser

    Get PDF
    Passively mode-locked fiber lasers have been intensively applied in various research fields. However, the passive mode-locking typically operates in free-running regime, which easily produces messy multiple pulses due to the fruitful nonlinear effects involved in optical fibers. Actively controlling those disordered pulses in a passively mode-locked laser is of great interest but rarely studied. In this work, we experimentally investigate a flexible pulse-spacing manipulation in the passively mode-locked multipulse fiber laser by both intracavity and extracavity methods. A tuning range of pulse spacing up to 1.5 ns is achieved. More importantly, continuous pulse-spacing modulation is successfully demonstrated through external optical injection. It is anticipated that the results can contribute to the understanding of laser nonlinear dynamics and pursuing the optimal performance of passively mode-locked fiber lasers for practical applications

    Ultrafast spectral dynamics of dual-color-soliton intracavity collision in a mode-locked fiber laser

    Get PDF
    The single-shot spectral dynamics of dual-color-soliton collisions inside a mode-locked laser is experimentally and numerically investigated. By using the all-optically dispersive Fourier transform, we spectrally unveil the collision-induced soliton self-reshaping process, which features dynamic spectral fringes over the soliton main lobe, and the rebuilding of Kelly sidebands with wavelength drifting. Meanwhile, the numerical simulations validate the experimental observation and provide additional insights into the physical mechanism of the collision-induced spectral dynamics from the temporal domain perspective. It is verified that the dynamic interference between the soliton and the dispersive waves is responsible for the observed collision-induced spectral evolution. These dynamic phenomena not only demonstrate the role of dispersive waves in the sophisticated soliton interaction inside the laser cavity, but also facilitate a deeper understanding of the soliton's inherent stability

    Unveiling multi-scale laser dynamics through time-stretch and time-lens spectroscopies

    Get PDF
    Spectro-temporal studies on the nonlinear physics of complex laser dynamics are essential in approaching its ultimate performance as well as understanding interdisciplinary problems. Unfortunately, it has long been limited by the insufficient spectro-temporal resolving power of conventional temporal and spectral analyzers, particularly when an indefinite optical signal ensemble contains polychromatic mixtures of continuous-wave (CW) and short pulse. In this work, we propose a real-time optical spectro-temporal analyzer (ROSTA) with three synchronized processing channels (i.e., multi-core) for single-shot studies on laser dynamics. It simultaneously provides temporal resolutions of ~70 ps in the time domain and 10’s ns (or 10’s MHz frame rate) in the spectral domain, as well as a high spectral resolution for multiscale optical inputs, i.e., ranging from CW to fs pulses. Its non-trivial record length of up to 6.4 ms enables continuous observations of non-repetitive optical events over an extensive time period ― equivalent to a propagation distance of ~1900 km. To showcase its practical applications, ROSTA is applied to visualize the onset of passive mode-locking of a fiber laser, and interesting phenomena, i.e., evolution from quasi-CW noise burst to strong shock, transition from fluctuation to mode-locking, and coexistence of CW and mode-locked pulses, have been spectro-temporally observed in a single-shot manner for the first time. It is anticipated that ROSTA will be a powerful technology for spectro-temporal optical diagnosis in different areas involving polychromatic transients

    An Assessment of Risk of Iodine Deficiency Among Pregnant Women in Sarawak, Malaysia

    Full text link
    Previous findings from a state-wide Iodine Deficiency Disorders (IDD) study among pregnant women (PW) in Sarawak indicated that PW are at risk of IDD and further assessment is needed. This paper describes the methodology used in conducting this study for an assessment of risk of iodine deficiency among pregnant women in Sarawak, Malaysia. A total of 30 maternal child health care clinics (MCHCs) were selected using probability proportional to population size (PPS) sampling technique. The PW sample size was calculated based on 95% confidence interval (CI), relative precision of 5%, design effect of 2, anticipated IDD prevalence of 65.0% and non-response rate of 20%. Thus, the total sample size required was 750 (25 respondents per selected MCHC). The WHO Expanded Programme on Immunization (EPI) surveys approach was used to randomly select the first respondent and subsequent respondents were chosen until the required number of PW was met. The required data were obtained through: face-to-face interviews (socio-demographic and food frequency questionnaire), clinical assessments (thyroid size, and hyper/hypothyroidism) and biochemical analysis (urine and blood serum). A total of 677 PW responded in the study with a response rate of 90.2%. Majority of the PW were at second gravida, aged 25-29 years old and of Malay ethnicity. The methodology used in this study was based on International guidelines which may provide state's estimates. All the necessary steps were taken into consideration to ensure valid and reliable findings on current iodine status among PW

    Data-driven image color theme enhancement

    Get PDF
    Proceedings of the 3rd ACM SIGGRAPH Asia 2010, Seoul, South Korea, 15-18 December 2010It is often important for designers and photographers to convey or enhance desired color themes in their work. A color theme is typically defined as a template of colors and an associated verbal description. This paper presents a data-driven method for enhancing a desired color theme in an image. We formulate our goal as a unified optimization that simultaneously considers a desired color theme, texture-color relationships as well as automatic or user-specified color constraints. Quantifying the difference between an image and a color theme is made possible by color mood spaces and a generalization of an additivity relationship for two-color combinations. We incorporate prior knowledge, such as texture-color relationships, extracted from a database of photographs to maintain a natural look of the edited images. Experiments and a user study have confirmed the effectiveness of our method. © 2010 ACM.postprin

    Ultrafast spectral dynamics of dual-color-soliton intracavity collision in a mode-locked fiber laser

    Get PDF
    The single-shot spectral dynamics of dual-color-soliton collisions inside a mode-locked laser is experimentally and numerically investigated. By using the all-optically dispersive Fourier transform, we spectrally unveil the collision-induced soliton self-reshaping process, which features dynamic spectral fringes over the soliton main lobe, and the rebuilding of Kelly sidebands with wavelength drifting. Meanwhile, the numerical simulations validate the experimental observation and provide additional insights into the physical mechanism of the collision-induced spectral dynamics from the temporal domain perspective. It is verified that the dynamic interference between the soliton and the dispersive waves is responsible for the observed collision-induced spectral evolution. These dynamic phenomena not only demonstrate the role of dispersive waves in the sophisticated soliton interaction inside the laser cavity, but also facilitate a deeper understanding of the soliton's inherent stability

    Flexural strength of special reinforced lightweight concrete beam for Industrialised Building System (IBS)

    Get PDF
    Special reinforced lightweight aggregate concrete (SRLWAC) beam is designed as beam component in Industrialised Building System (IBS). It is used to overcome the difficulties during the component installation due to the heavy lifting task. This paper presents the flexural strength and performance of SRLWAC beam under vertical static load. SRLWAC beam was set-up on two columns corbel and tested under monotonic vertical load. Five Linear Variable Displacement Transducers (LVDTs) were instrumented in the model to record displacement. The ultimate flexural capacity of the beam was obtained at the end of experiment where failure occurred. Performance of the beam was evaluated in load-displacement relationship of beam and mode of failure. SRLWAC beam was then modelled and simulated by nonlinear finite element software- Autodesk Simulation Mechanical. Result from finite element analysis was verified by experimental result. Maximum mid-span displacement, Von-Mises stress, concrete maximum principal stress, and yielding strength of reinforcement were discussed in this paper. The beam was behaved elastically up to 90 kN and deformed plastically until ultimate capacity of 250.1 kN in experimental test. The maximum mid span displacement for experimental and simulation were 15.21 mm and 15.36 mm respectively. The major failure of IBS SRLWAC beam was the splitting of the concrete and yielding of main reinforcements at overlay end. Ductility ratio of IBS SRLWAC beam was 14.2, which was higher than pre-stressed concrete beam

    Pulse-spacing manipulation in a passively mode-locked multipulse fiber laser

    Get PDF
    Passively mode-locked fiber lasers have been intensively applied in various research fields. However, the passive mode-locking typically operates in free-running regime, which easily produces messy multiple pulses due to the fruitful nonlinear effects involved in optical fibers. Actively controlling those disordered pulses in a passively mode-locked laser is of great interest but rarely studied. In this work, we experimentally investigate a flexible pulse-spacing manipulation in the passively mode-locked multipulse fiber laser by both intracavity and extracavity methods. A tuning range of pulse spacing up to 1.5 ns is achieved. More importantly, continuous pulse-spacing modulation is successfully demonstrated through external optical injection. It is anticipated that the results can contribute to the understanding of laser nonlinear dynamics and pursuing the optimal performance of passively mode-locked fiber lasers for practical applications
    corecore