7,480 research outputs found
Quantum state transfer via the ferromagnetic chain in a spatially modulated field
We show that a perfect quantum state transmission can be realized through a
spin chain possessing a commensurate structure of energy spectrum, which is
matched with the corresponding parity. As an exposition of the mirror inversion
symmetry discovered by Albanese et. al (quant-ph/0405029), the parity matched
the commensurability of energy spectra help us to present the novel
pre-engineered spin systems for quantum information transmission. Based on the
these theoretical analysis, we propose a protocol of near-perfect quantum state
transfer by using a ferromagnetic Heisenberg chain with uniform coupling
constant, but an external parabolic magnetic field. The numerical results shows
that the initial Gaussian wave packet in this system with optimal field
distribution can be reshaped near-perfectly over a longer distance.Comment: 5 pages, 2 figure
Annihilation Type Radiative Decays of Meson in Perturbative QCD Approach
With the perturbative QCD approach based on factorization, we study the
pure annihilation type radiative decays and . We find that the branching ratio of is
, which is too small to be measured
in the current factories of BaBar and Belle. The branching ratio of is , which is just
at the corner of being observable in the factories. A larger branching
ratio is also predicted.
These decay modes will help us testing the standard model and searching for new
physics signals.Comment: 4 pages, revtex, with 1 eps figur
Atomic Entanglement vs Photonic Visibility for Quantum Criticality of Hybrid System
To characterize the novel quantum phase transition for a hybrid system
consisting of an array of coupled cavities and two-level atoms doped in each
cavity, we study the atomic entanglement and photonic visibility in comparison
with the quantum fluctuation of total excitations. Analytical and numerical
simulation results show the happen of quantum critical phenomenon similar to
the Mott insulator to superfluid transition. Here, the contour lines
respectively representing the atomic entanglement, photonic visibility and
excitation variance in the phase diagram are consistent in the vicinity of the
non-analytic locus of atomic concurrences.Comment: 4 pages, 2 figure
Quantum State Transfer Characterized by Mode Entanglement
We study the quantum state transfer (QST) of a class of tight-bonding Bloch
electron systems with mirror symmetry by considering the mode entanglement.
Some rigorous results are obtained to reveal the intrinsic relationship between
the fidelity of QST and the mirror mode concurrence (MMC), which is defined to
measure the mode entanglement with a certain spatial symmetry and is just the
overlap of a proper wave function with its mirror image. A complementarity is
discovered as the maximum fidelity is accompanied by a minimum of MMC. And at
the instant, which is just half of the characteristic time required to
accomplish a perfect QST, the MMC can reach its maximum value one. A large
class of perfect QST models with a certain spectrum structure are discovered to
support our analytical results.Comment: 6 pages, 3 figures. to appear in PR
Quantum information storage and state transfer based on spin systems
The idea of quantum state storage is generalized to describe the coherent
transfer of quantum information through a coherent data bus. In this universal
framework, we comprehensively review our recent systematical investigations to
explore the possibility of implementing the physical processes of quantum
information storage and state transfer by using quantum spin systems, which may
be an isotropic antiferromagnetic spin ladder system or a ferromagnetic
Heisenberg spin chain. Our studies emphasize the physical mechanisms and the
fundamental problems behind the various protocols for the storage and transfer
of quantum information in solid state systems.Comment: 11 pages, 9 figures, Review article on the quantum spin based quantum
information processing, to appear the special issue of Low Temperature
Physics dedicated to the 70-th anniversary of creation of concept
"antiferromagnetism" in physics of magnetis
Peierls distorted chain as a quantum data bus for quantum state transfer
We systematically study the transfer of quantum state of electron spin as the
flying qubit along a half-filled Peierls distorted tight-binding chain
described by the Su-Schrieffer-Heeger (SSH) model, which behaves as a quantum
data bus. This enables a novel physical mechanism for quantum communication
with always-on interaction: the effective hopping of the spin carrier between
sites and connected to two sites in this SSH chain can be induced by
the quasi-excitations of the SSH model. As we prove, it is the Peierls energy
gap of the SSH quasi-excitations that plays a crucial role to protect the
robustness of the quantum state transfer process. Moreover, our observation
also indicates that such a scheme can also be employed to explore the intrinsic
property of the quantum system.Comment: 10 pages, 6 figure
Characterizing entanglement by momentum-jump in the frustrated Heisenberg ring at quantum phase transition
We study the pairwise concurrences, a measure of entanglement, of the ground
states for the frustrated Heisenberg ring to explore the relation between
entanglement and quantum phase transition associated with the momentum jump.
The groundstate concurrences between any two sites are obtained analytically
and numerically. It shows that the summation of all possible pairwise
concurrences is an appropriate candidate to depict the phase transition. We
also investigate the role that the momentum takes in the jump of concurrence at
the critical points. We find that an abrupt momentum change rusults in the
maximal concurrence difference of two degenerate ground states.Comment: 7 pages, 5 figure
- …