7,480 research outputs found

    Quantum state transfer via the ferromagnetic chain in a spatially modulated field

    Full text link
    We show that a perfect quantum state transmission can be realized through a spin chain possessing a commensurate structure of energy spectrum, which is matched with the corresponding parity. As an exposition of the mirror inversion symmetry discovered by Albanese et. al (quant-ph/0405029), the parity matched the commensurability of energy spectra help us to present the novel pre-engineered spin systems for quantum information transmission. Based on the these theoretical analysis, we propose a protocol of near-perfect quantum state transfer by using a ferromagnetic Heisenberg chain with uniform coupling constant, but an external parabolic magnetic field. The numerical results shows that the initial Gaussian wave packet in this system with optimal field distribution can be reshaped near-perfectly over a longer distance.Comment: 5 pages, 2 figure

    Annihilation Type Radiative Decays of BB Meson in Perturbative QCD Approach

    Full text link
    With the perturbative QCD approach based on kTk_T factorization, we study the pure annihilation type radiative decays B0ϕγB^0 \to \phi\gamma and B0J/ψγB^0\to J/\psi \gamma. We find that the branching ratio of B0ϕγB^0 \to \phi\gamma is (2.70.60.6+0.3+1.2)×1011(2.7^{+0.3+1.2}_{-0.6-0.6})\times10^{-11}, which is too small to be measured in the current BB factories of BaBar and Belle. The branching ratio of B0J/ψγB^0\to J/\psi \gamma is (4.50.50.6+0.6+0.7)×107({4.5^{+0.6+0.7}_{-0.5-0.6}})\times10^{-7}, which is just at the corner of being observable in the BB factories. A larger branching ratio BR(Bs0J/ψγ)5×106BR(B_s^0 \to J/\psi \gamma) \simeq 5 \times 10^{-6} is also predicted. These decay modes will help us testing the standard model and searching for new physics signals.Comment: 4 pages, revtex, with 1 eps figur

    Atomic Entanglement vs Photonic Visibility for Quantum Criticality of Hybrid System

    Get PDF
    To characterize the novel quantum phase transition for a hybrid system consisting of an array of coupled cavities and two-level atoms doped in each cavity, we study the atomic entanglement and photonic visibility in comparison with the quantum fluctuation of total excitations. Analytical and numerical simulation results show the happen of quantum critical phenomenon similar to the Mott insulator to superfluid transition. Here, the contour lines respectively representing the atomic entanglement, photonic visibility and excitation variance in the phase diagram are consistent in the vicinity of the non-analytic locus of atomic concurrences.Comment: 4 pages, 2 figure

    Quantum State Transfer Characterized by Mode Entanglement

    Full text link
    We study the quantum state transfer (QST) of a class of tight-bonding Bloch electron systems with mirror symmetry by considering the mode entanglement. Some rigorous results are obtained to reveal the intrinsic relationship between the fidelity of QST and the mirror mode concurrence (MMC), which is defined to measure the mode entanglement with a certain spatial symmetry and is just the overlap of a proper wave function with its mirror image. A complementarity is discovered as the maximum fidelity is accompanied by a minimum of MMC. And at the instant, which is just half of the characteristic time required to accomplish a perfect QST, the MMC can reach its maximum value one. A large class of perfect QST models with a certain spectrum structure are discovered to support our analytical results.Comment: 6 pages, 3 figures. to appear in PR

    Quantum information storage and state transfer based on spin systems

    Get PDF
    The idea of quantum state storage is generalized to describe the coherent transfer of quantum information through a coherent data bus. In this universal framework, we comprehensively review our recent systematical investigations to explore the possibility of implementing the physical processes of quantum information storage and state transfer by using quantum spin systems, which may be an isotropic antiferromagnetic spin ladder system or a ferromagnetic Heisenberg spin chain. Our studies emphasize the physical mechanisms and the fundamental problems behind the various protocols for the storage and transfer of quantum information in solid state systems.Comment: 11 pages, 9 figures, Review article on the quantum spin based quantum information processing, to appear the special issue of Low Temperature Physics dedicated to the 70-th anniversary of creation of concept "antiferromagnetism" in physics of magnetis

    Peierls distorted chain as a quantum data bus for quantum state transfer

    Full text link
    We systematically study the transfer of quantum state of electron spin as the flying qubit along a half-filled Peierls distorted tight-binding chain described by the Su-Schrieffer-Heeger (SSH) model, which behaves as a quantum data bus. This enables a novel physical mechanism for quantum communication with always-on interaction: the effective hopping of the spin carrier between sites AA and BB connected to two sites in this SSH chain can be induced by the quasi-excitations of the SSH model. As we prove, it is the Peierls energy gap of the SSH quasi-excitations that plays a crucial role to protect the robustness of the quantum state transfer process. Moreover, our observation also indicates that such a scheme can also be employed to explore the intrinsic property of the quantum system.Comment: 10 pages, 6 figure

    Characterizing entanglement by momentum-jump in the frustrated Heisenberg ring at quantum phase transition

    Full text link
    We study the pairwise concurrences, a measure of entanglement, of the ground states for the frustrated Heisenberg ring to explore the relation between entanglement and quantum phase transition associated with the momentum jump. The groundstate concurrences between any two sites are obtained analytically and numerically. It shows that the summation of all possible pairwise concurrences is an appropriate candidate to depict the phase transition. We also investigate the role that the momentum takes in the jump of concurrence at the critical points. We find that an abrupt momentum change rusults in the maximal concurrence difference of two degenerate ground states.Comment: 7 pages, 5 figure
    corecore