5,520 research outputs found
Stabilization of Fast Pyrolysis Liquids from Biomass by Mild Catalytic Hydrotreatment:Model Compound Study
Repolymerization is a huge problem in the storage and processing of biomass pyrolysis liquid (PL). Herein, to solve the problem of repolymerization, mild catalytic hydrotreatment of PL was conducted to convert unstable PL model compounds (hydroxyacetone, furfural, and phenol) into stable alcohols. An Ni/SiO2 catalyst was synthesized by the deposition-precipitation method and used in a mild hydrotreatment process. The mild hydrotreatment of the single model compound was studied to determine the reaction pathways, which provided guidance for improving the selectivity of stable intermediate alcohols through the control of reaction conditions. More importantly, the mild hydrotreatment of mixed model compounds was evaluated to simulate the PL more factually. In addition, the effect of the interaction between hydroxyacetone, furfural, and phenol during the catalytic hydrotreatment was also explored. There was a strange phenomenon observed in that phenol was not converted in the initial stage of the hydrotreatment of mixed model compounds. Thermogravimetric analysis (TGA), Ultraviolet-Raman (UV-Raman), and Brunauer−Emmett−Teller (BET) characterization of catalysts used in the hydrotreatment of single and mixed model compounds demonstrated that this phenomenon did not mainly arise from the irreversible deactivation of catalysts caused by carbon deposition, but the competitive adsorption among hydroxyacetone, furfural, and phenol during the mild hydrotreatment of mixed model compounds
1-(2,4-Dinitrophenyl)-3,3-dinitroazetidine
In the title compound, C9H7N5O8, the dihedral angle between the mean plane of the azetidine ring and that of the benzene ring is 26.1 (1)°; the planes of the two nitro groups of the azetidine ring are aligned at 88.7 (1)°
Association of Intrarenal B-Cell Infiltrates with Clinical Outcome in Lupus Nephritis: A Study of 192 Cases
Background. Lupus nephritis (LN) remains a major cause of morbidity and end-stage renal disease. Dysfunction of B lymphocytes is thought to be important in the pathogenesis of SLE/LN. Intrarenal B cells have been found in several forms of inflammatory kidney diseases although their role in LN renal is not well defined. Methods. Intrarenal B cells were analyzed in 192 renal biopsies from patients diagnosed with lupus nephritis. Immunohistochemical staining of serial sections was performed for each LN patient using CD20, CD3, and CD21 antibodies. Results. Intrarenal B cells were more likely to be associated with class IV LN and were mainly distributed in the renal interstitium, with very few in the glomerulus. The systemic lupus erythematosus disease activity index (SLEDAI), blood urea nitrogen, and serum creatinine levels were all significantly greater in the LN-B cell groups (all P<0.05). LN renal activity and chronicity indices correlated with B-cells infiltrates (all P<0.0001). Renal biopsies were classified into four distinct categories according to the organizational grade of inflammatory cell infiltrates. Germinal center- (GC-) like structures were not identified in any LN biopsies. Conclusion. It is hypothesized that intrarenal B cells enhance immunological responses and exaggerate the local immune response to persisting autoimmune damage in the tubulointerstitium
Proteomic Profile of Carbonylated Proteins Screen Regulation of Apoptosis via CaMK Signaling in Response to Regular Aerobic Exercise
To research carbonylated proteins and screen molecular targets in the rat striatum on regular aerobic exercise, male SpragueDawley rats (13 months old, n = 24) were randomly divided into middle-aged sedentary control (M-SED) and aerobic exercise (M-EX) groups (n = 12 each). Maximum oxygen consumption (VO2max) gradually increased from 50%–55% to 65%–70% for a total of 10 weeks. A total of 36 carbonylated proteins with modifed oxidative sites were identifed by Electrospray IonizationQuadrupole-Time of Flight-Mass Spectrometer (ESI-Q-TOF-MS), including 17 carbonylated proteins unique to the M-SED group, calcium/calmodulin-dependent protein kinase type II subunit beta (CaMKII�), and heterogeneous nuclear ribonucleoprotein A2/B1 (Hnrnpa2b1), among others, and 19 specifc to the M-EX group, ubiquitin carboxyl-terminal hydrolase isozyme L1 (UCHL1), and malic enzyme, among others. Regular aerobic exercise improved behavioral and stereological indicators, promoted normal apoptosis (P \u3c 0.01), alleviated carbonylation of the CaMKII� and Hnrnpa2b1, but induced carbonylation of the UCH-L1, and signifcantly upregulated the expression levels of CaMKII�, CaMKII�, and Vdac1 (p \u3c 0.01) and Hnrnpa2b1 and UCH-L1 (p \u3c 0.01), as well as the phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin pathways (PI3K/Akt/mTOR) pathway-related genes Akt and mTOR. Regular aerobic exercise for 10 weeks (incremental for the frst 6 weeks followed by constant loading for 4 weeks) enhanced carbonylation of CaMKII�, Hnrnpa2b1, and modulated apoptosis via activation of CaMK and phosphoinositide 3-kinase/protein kinase B/mTOR signaling. It also promoted normal apoptosis in the rat striatum, which may have protective efects in neurons
- …