601 research outputs found

    The Regulatory Role of MeAIB in Protein Metabolism and the mTOR Signaling Pathway in Porcine Enterocytes.

    Get PDF
    Amino acid transporters play an important role in cell growth and metabolism. MeAIB, a transporter-selective substrate, often represses the adaptive regulation of sodium-coupled neutral amino acid transporter 2 (SNAT2), which may act as a receptor and regulate cellular amino acid contents, therefore modulating cellular downstream signaling. The aim of this study was to investigate the effects of MeAIB to SNAT2 on cell proliferation, protein turnover, and the mammalian target of rapamycin (mTOR) signaling pathway in porcine enterocytes. Intestinal porcine epithelial cells (IPEC)-J2 cells were cultured in a high-glucose Dulbecco's modified Eagle's (DMEM-H) medium with 0 or 5 mmoL/L System A amino acid analogue (MeAIB) for 48 h. Cells were collected for analysis of proliferation, cell cycle, protein synthesis and degradation, intracellular free amino acids, and the expression of key genes involved in the mTOR signaling pathway. The results showed that SNAT2 inhibition by MeAIB depleted intracellular concentrations of not only SNAT2 amino acid substrates but also of indispensable amino acids (methionine and leucine), and suppressed cell proliferation and impaired protein synthesis. MeAIB inhibited mTOR phosphorylation, which might be involved in three translation regulators, EIF4EBP1, IGFBP3, and DDIT4 from PCR array analysis of the 84 genes related to the mTOR signaling pathway. These results suggest that SNAT2 inhibition treated with MeAIB plays an important role in regulating protein synthesis and mTOR signaling, and provide some information to further clarify its roles in the absorption of amino acids and signal transduction in the porcine small intestine

    RS5M: A Large Scale Vision-Language Dataset for Remote Sensing Vision-Language Foundation Model

    Full text link
    Pre-trained Vision-Language Foundation Models utilizing extensive image-text paired data have demonstrated unprecedented image-text association capabilities, achieving remarkable results across various downstream tasks. A critical challenge is how to make use of existing large-scale pre-trained VLMs, which are trained on common objects, to perform the domain-specific transfer for accomplishing domain-related downstream tasks. In this paper, we propose a new framework that includes the Domain Foundation Model (DFM), bridging the gap between the General Foundation Model (GFM) and domain-specific downstream tasks. Moreover, we present an image-text paired dataset in the field of remote sensing (RS), RS5M, which has 5 million RS images with English descriptions. The dataset is obtained from filtering publicly available image-text paired datasets and captioning label-only RS datasets with pre-trained VLM. These constitute the first large-scale RS image-text paired dataset. Additionally, we tried several Parameter-Efficient Fine-Tuning methods on RS5M to implement the DFM. Experimental results show that our proposed dataset are highly effective for various tasks, improving upon the baseline by 8%∼16%8 \% \sim 16 \% in zero-shot classification tasks, and obtaining good results in both Vision-Language Retrieval and Semantic Localization tasks. \url{https://github.com/om-ai-lab/RS5M}Comment: RS5M dataset v

    Long-Term l-Serine Administration Reduces Food Intake and Improves Oxidative Stress and Sirt1/NFκB Signaling in the Hypothalamus of Aging Mice

    Get PDF
    Serine has recently been shown to reduce oxidative stress and inflammation, which, when occurring in the hypothalamus, contribute to age-related obesity. To explore whether long-term serine administration reduces oxidative stress and body weight in aging mice, various concentrations of l-serine dissolved in water were administered to 18-month-old C57BL/6J mice for 6 months. The results showed that the administration of 0.5% (w/v) l-serine significantly reduced food intake and body weight gain during the experiment. Moreover, the administration of 0.5% l-serine decreased the concentrations of leptin, malondialdehyde, interleukin-1β, and interleukin-6, while it increased those of superoxide dismutase and glutathione, in both the serum and hypothalamus. Reactive oxygen species and the activity of nicotinamide adenine dinucleotide phosphate oxidase were reduced in the hypothalamus of aging mice treated with l-serine as compared with untreated control mice. Additionally, the expression of the leptin receptor increased while the levels of neuropeptide Y and agouti-related protein decreased in mice that had been treated with 0.5% l-serine. The expression of Sirt1 and phosphorylated signal transducers and activators of transcription 3 (pSTAT3) increased, while that of phosphorylated NFκB decreased in the mice treated with 0.5% l-serine. These results indicated that long-term l-serine administration reduces body weight by decreasing orexigenic peptide expression and reduces oxidative stress and inflammation during aging in mice, possibly by modulating the Sirt1/NFκB pathway. Thus, l-serine has the potential to be used in the prevention of age-related obesity

    Dietary Lysozyme Alters Sow’s Gut Microbiota, Serum Immunity and Milk Metabolite Profile

    Get PDF
    The aim of current study was to determine variations in sow’s gut microbiota, serum immunity, and milk metabolite profile mediated by lysozyme supplementation. Twenty-four pregnant sows were assigned to a control group without supplementation and two treatments with 0.5 kg/t and 1.0 kg/t lysozyme provided in formula feed for 21 days (n = 8 per treatment). Microbiota analysis and metagenomic predictions were based on 16s RNA high-throughput sequencing. Milk metabolome was assessed by untargeted liquid chromatography tandem mass spectrometry. Serum biochemical indicators and immunoglobulins were also determined. Gut microbial diversity of sows receiving 1.0 kg/t lysozyme treatment was significantly reduced after the trial. Spirochaetes, Euryarchaeota, and Actinobacteria significantly increased while Firmicutes showed a remarkable reduction in 1.0 kg/t group compared with control. Lysozyme addition rebuilt sow’s gut microbiota to beneficial composition identified by reduced richness of Escherichia coli and increased abundance of Lactobacillus amylovorus. Accordingly, microbial metabolic functions including pyrimidine metabolism, purine metabolism, and amino acid related enzymes were significantly up-regulated in 1.0 kg/t group. Microbial metabolic phenotypes like the richness of Gram-positive bacteria and oxidative stress tolerance were also significantly reduced by lysozyme treatment. Serum alanine transaminase (ALT) activity and IgA levels were significantly down-regulated in the 1.0 kg/t group compared with control, but IgM levels showed a significantly increase in 1.0 kg/t group. Milk metabolites such as L-glutamine, creatine, and L-arginine showed significantly dose-dependent changes after treatment. Overall, lysozyme supplementation could effectively improve the composition, metabolic functions, and phenotypes of sow’s gut microbiota and it also benefit sows with better serum immunity and milk composition. This research could provide theoretical support for further application of lysozyme in promoting animal gut health and prevent pathogenic infections in livestock production

    Modeling stormwater management at the city district level in response to changes in land use and low impact development

    Get PDF
    Mitigating the impact of increasing impervious surfaces on stormwater runoff by low impact development (LID) is currently being widely promoted at site and local scales. In turn, the series of distributed LID implementations may produce cumulative effects and benefit the stormwater management at larger regional scales. However, the potential of multiple LID implementations to mitigate the broad-scale impacts of urban stormwater is not yet fully understood, particularly among different design strategies to reduce directly connected impervious areas (DCIA). In this study, the hydrological responses of stormwater runoff characteristics to four different land use conversion scenarios at the city scale were explored using GIS-based Stormwater Management Model (SWMM). Model simulation results confirmed the effectiveness of LID controls; however, they also indicated that even with the most beneficial scenarios hydrological performance of developed areas was still not yet up to the pre-development level, especially with pronounced changes from pervious to impervious land

    Betaine Inhibits Interleukin-1β Production and Release: Potential Mechanisms

    Get PDF
    Betaine is a critical nutrient for mammal health, and has been found to alleviate inflammation by lowering interleukin (IL)-1β secretion; however, the underlying mechanisms by which betaine inhibits IL-1β secretion remain to be uncovered. In this review, we summarize the current understanding about the mechanisms of betaine in IL-1β production and release. For IL-1β production, betaine affects canonical and non-canonical inflammasome-mediated processing of IL-1β through signaling pathways, such as NF-κB, NLRP3 and caspase-8/11. For IL-1β release, betaine inhibits IL-1β release through blocking the exocytosis of IL-1β-containing secretory lysosomes, reducing the shedding of IL-1β-containing plasma membrane microvesicles, suppressing the exocytosis of IL-1β-containing exosomes, and attenuating the passive efflux of IL-1β across hyperpermeable plasma membrane during pyroptotic cell death, which are associated with ERK1/2/PLA2 and caspase-8/A-SMase signaling pathways. Collectively, this review highlights the anti-inflammatory property of betaine by inhibiting the production and release of IL-1β, and indicates the potential application of betaine supplementation as an adjuvant therapy in various inflammatory diseases associating with IL-1β secretion

    Aflatoxin B1, zearalenone and deoxynivalenol in feed ingredients and complete feed from different Province in China

    Get PDF
    Abstract Background The current study was carried out to provide a reference for monitory of aflatoxin B1 (AFB1), zearalenone (ZEN) and deoxynivalenol (DON) contamination in feed ingredients and complete feeds were collected from different Province in China from 2013 to 2015. Methods A total of 443 feed ingredients, including 220 corn, 24 wheat, 24 domestic distillers dried grains with soluble (DDGS), 55 bran, 20 wheat shorts and red dog, 37 imported DDGS, 34 corn germ meal and 29 soybean meal as well as 127 complete feeds including 25 pig complete feed (powder), 90 pig complete feed (pellet), six duck complete feed and six cattle complete feed were randomly collected from different Province in China, respectively, by high-performance chromatography in combined with UV or fluorescence analysis. Results The incidence rates of AFB1, ZEN and DON contamination of feed ingredients and complete feeds were 80.8, 92.3 and 93.9 %, respectively. The percentage of positive samples for DON ranged from 66.7 to 100 %. Domestic DDGS and imported DDGS presented the most serious contamination AFB1, ZEN and DON contamination levels of feeds ranged from 61.5 to 100 %, indicated that serious contamination over the studied 3-year period. Conclusion The current data provide clear evidence that AFB1, ZEN and DON contamination of feed ingredients and complete feeds in different Province in China is serious and differs over past 3-year. The use of corn, domestic DDGS, imported DDGS and corn germ meal, which may be contaminated with these three mycotoxins, as animal feed may triggered a health risk for animal. Feeds are most contaminated with DON followed by ZEN and AFB1. Mycotoxins contamination in feed ingredients and complete feeds should be monitored routinely in China
    • …
    corecore