19 research outputs found

    An innovative multi-modal retinal imaging system for in vivo retinal detection in small animals

    Get PDF
    This paper presents an innovative retinal imaging system tailored for in vivo fundus detection in small animals. This system integrates Scanning Laser Ophthalmoscopy (SLO) and optical Coherence Tomography (OCT) techniques, enabling the simultaneous generation of images from various modalities, including SLO reflectance, SLO fluorescein angiogram, OCT, and OCT angiogram. The existing multi-modal retinal imaging systems generally encounter limitations such as the inability to detect peripheral lesion areas attributed to small Field of View (FOV) design and susceptibility to sample motion due to slow data acquisition speed. To address these challenges, it’s essential to underscore that this proposed system offers a range of notable advantages, including its compact design, the capacity for widefield imaging with a FOV of up to 100°, and a rapid OCT A-scan rate of 250 kHz, notably exceeding the capabilities of pre-existing multi-modal retinal imaging systems. Validation of the system involved imaging the eyes of normal wild-type mice and diseased mice afflicted with retinal detachment and choroidal neovascularization (CNV). The favorable imaging results demonstrate the system’s reliability in identifying retinal lesions in small animals

    Rhein-based necrosis-avid MRI contrast agents for early evaluation of tumor response to microwave ablation therapy

    No full text
    PURPOSE: Early evaluation of tumor response to thermal ablation therapy can help identify untreated tumor cells and then perform repeated treatment as soon as possible. The purpose of this work was to explore the potential of rhein-based necrosis-avid contrast agents (NACAs) for early evaluation of tumor response to microwave ablation (MWA). METHODS: 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay was performed to test the cytotoxicity of rhein-based NACAs against HepG2 cells. Rat models of liver MWA were used for investigating the effectiveness of rhein-based NACAs in imaging the MWA lesion, the optimal time period for post-MWA MRI examination, and the metabolic behaviors of 68 Ga-labeled rhein-based NACAs. Rat models of orthotopic liver W256 tumor MWA were used for investigating the time window of rhein-based NACAs for imaging the MWA lesion, the effectiveness of these NACAs in distinguishing the residual tumor and the MWA lesion, and their feasibility in early evaluating the tumor response to MWA. RESULTS: Gadolinium 2,2',2''-(10-(2-((4-(4,5-Dihydroxy-9,10-dioxo-9,10-dihydroanthracene-2-carboxamido)butyl)amino)-2-oxoethyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetic acid (GdL2 ) showed low cytotoxicity and high quality in imaging the MWA region. The optimal time period for post-MWA MRI examination using GdL2 was 2 to 24 h after the treatment. During 2.5 to 3.5 h postinjection, GdL2 can better visualize the MWA lesion in comparison with gadolinium 2-[4,7,10-tris(carboxymethyl)-1,4,7,10-tetraazacyclododec-1-yl]acetic acid (Gd-DOTA), and the residual tumor would not be enhanced. The tumor response to MWA as evaluated by using GdL2 -enhanced MRI was consistent with histological examination. CONCLUSION: GdL2 appears to be a promising NACA for the tumor response assessment after thermal ablation therapies.status: publishe

    Optimizing Printing Fidelity Of The Single-Nozzle Based Multimaterial Direct Ink Writing For 3D Food Printing

    No full text
    Single-nozzle based multimaterial direct ink writing enables voxel-based fabrication with superior printing efficiency than multi-nozzle protocol. This is attractive for food 3D printing process where efficiency matters for its application. However, for single-nozzle based process, the presence of residual material in the shared channel can affect its printing fidelity. In this study, we propose a path planning algorithm that can address this issue by incorporating (i) advance distance to compensate the extrusion delay when switching materials, and (ii) in-process printhead motion adjustments to stabilise the extrusion process. Our approach demonstrated a substantial improvement in printing fidelity, where the switching point offset was reduced to ±0.5 mm. Similarly, the unstable extrusion behaviours (bulging and necking) during switching materials were suppressed, where the printing fidelity was improved by 27 ± 5% (bulging) and 19 ± 3% (necking) respectively. Additionally, we provide an open-source slicing programme that empowers users to implement the above two algorithms

    Optimizing Printing Fidelity Of The Single-Nozzle Based Multimaterial Direct Ink Writing For 3D Food Printing

    No full text
    Single-nozzle based multimaterial direct ink writing enables voxel-based fabrication with superior printing efficiency than multi-nozzle protocol. This is attractive for food 3D printing process where efficiency matters for its application. However, for single-nozzle based process, the presence of residual material in the shared channel can affect its printing fidelity. In this study, we propose a path planning algorithm that can address this issue by incorporating (i) advance distance to compensate the extrusion delay when switching materials, and (ii) in-process printhead motion adjustments to stabilise the extrusion process. Our approach demonstrated a substantial improvement in printing fidelity, where the switching point offset was reduced to ±0.5 mm. Similarly, the unstable extrusion behaviours (bulging and necking) during switching materials were suppressed, where the printing fidelity was improved by 27 ± 5% (bulging) and 19 ± 3% (necking) respectively. Additionally, we provide an open-source slicing programme that empowers users to implement the above two algorithms

    Synthesis and Evaluation of Diindole-Based MRI Contrast Agent for In Vivo Visualization of Necrosis

    No full text
    PURPOSE: Noninvasive imaging of cell necrosis can provide an early evaluation of tumor response to treatments. Here, we aimed to design and synthesize a novel diindole-based magnetic resonance imaging (MRI) contrast agent (Gd-bis-DOTA-diindolylmethane, Gd-DIM) for assessment of tumor response to therapy at an early stage. PROCEDURES: The oil-water partition coefficient (Log P) and relaxivity of Gd-DIM were determined in vitro. Then, its necrosis avidity was examined in necrotic cells in vitro and in rat models with microwave ablation-induced muscle necrosis (MAMN) and ischemia reperfusion-induced liver necrosis (IRLN) by MRI. Visualization of tumor necrosis induced by combretastatin A-4 disodium phosphate (CA4P) was evaluated in rats bearing W256 orthotopic liver tumor by MRI. Finally, DNA binding assay was performed to explore the possible necrosis-avidity mechanism of Gd-DIM. RESULTS: The Log P value and T1 relaxivity of Gd-DIM is - 2.15 ± 0.01 and 6.61 mM-1 s-1, respectively. Gd-DIM showed predominant necrosis avidity in vitro and in vivo. Clear visualization of the tumor necrosis induced by CA4P was achieved at 60 min after administration of Gd-DIM. DNA binding study indicated that the necrosis-avidity mechanism of Gd-DIM may be due to its binding to exposed DNA in necrotic cells. CONCLUSION: Gd-DIM may serve as a promising necrosis-avid MRI contrast agent for early assessment of tumor response to therapy.status: publishe

    Dynamics and genetic regulation of macronutrient concentrations during grain development in maize

    No full text
    Nitrogen (N), phosphorus (P), and potassium (K) are essential macronutrients that are crucial not only for maize growth and development, but also for crop yield and quality. The genetic basis of macronutrient dynamics and accumulation during grain filling in maize remains largely unknown. In this study, we evaluated grain N, P, and K concentrations in 206 recombinant inbred lines generated from a cross of DH1M and T877 at six time points after pollination. We then calculated conditional phenotypic values at different time intervals to explore the dynamic characteristics of the N, P, and K concentrations. Abundant phenotypic variations were observed in the concentrations and net changes of these nutrients. Unconditional quantitative trait locus (QTL) mapping revealed 41 non-redundant QTLs, including 17, 16, and 14 for the N, P, and K concentrations, respectively. Conditional QTL mapping uncovered 39 non-redundant QTLs related to net changes in the N, P, and K concentrations. By combining QTL, gene expression, co-expression analysis, and comparative genomic data, we identified 44, 36, and 44 candidate genes for the N, P, and K concentrations, respectively, including GRMZM2G371058 encoding a Dof-type zinc finger DNA-binding family protein, which was associated with the N concentration, and GRMZM2G113967 encoding a CBL-interacting protein kinase, which was related to the K concentration. The results deepen our understanding of the genetic factors controlling N, P, and K accumulation during maize grain development and provide valuable genes for the genetic improvement of nutrient concentrations in maize

    Thermoelectric Silver‐Based Chalcogenides

    Get PDF
    Abstract Heat is abundantly available from various sources including solar irradiation, geothermal energy, industrial processes, automobile exhausts, and from the human body and other living beings. However, these heat sources are often overlooked despite their abundance, and their potential applications remain underdeveloped. In recent years, important progress has been made in the development of high‐performance thermoelectric materials, which have been extensively studied at medium and high temperatures, but less so at near room temperature. Silver‐based chalcogenides have gained much attention as near room temperature thermoelectric materials, and they are anticipated to catalyze tremendous growth in energy harvesting for advancing internet of things appliances, self‐powered wearable medical systems, and self‐powered wearable intelligent devices. This review encompasses the recent advancements of thermoelectric silver‐based chalcogenides including binary and multinary compounds, as well as their hybrids and composites. Emphasis is placed on strategic approaches which improve the value of the figure of merit for better thermoelectric performance at near room temperature via engineering material size, shape, composition, bandgap, etc. This review also describes the potential of thermoelectric materials for applications including self‐powering wearable devices created by different approaches. Lastly, the underlying challenges and perspectives on the future development of thermoelectric materials are discussed

    Transverse polarisation measurement of Λ\Lambda hyperons in ppNe collisions at sNN\sqrt{s_{NN}}=68.4 GeV with the LHCb detector

    No full text
    A measurement of the transverse polarization of the Λ\Lambda and Λˉ\bar{\Lambda}hyperons in ppNe fixed-target collisions at sNN\sqrt{s_{NN}}=68.4 GeV is presented using data collected by the LHCb detector. The polarization is studied using the decay Λ→pπ−\Lambda \rightarrow p \pi^- together with its charge conjugated process, the integrated values measured are PΛ=0.029±0.019 (stat)±0.012 (syst) , P_{\Lambda} = 0.029 \pm 0.019 \, (\rm{stat}) \pm 0.012 \, (\rm{syst}) \, , PΛˉ=0.003±0.023 (stat)±0.014 (syst)  P_{\bar{\Lambda}} = 0.003 \pm 0.023 \, (\rm{stat}) \pm 0.014 \,(\rm{syst}) \, Furthermore, the results are shown as a function of the Feynman xx variable, transverse momentum, pseudorapidity and rapidity of the hyperons, and are compared with previous measurements.A measurement of the transverse polarization of the Λ\Lambda and Λˉ\bar{\Lambda} hyperons in ppNe fixed-target collisions at sNN\sqrt{s_{NN}} = 68.4 GeV is presented using data collected by the LHCb detector. The polarization is studied using the decay Λ→pπ−\Lambda \rightarrow p \pi^- together with its charge conjugated process, the integrated values measured are PΛ=0.029±0.019 (stat)±0.012 (syst) , P_{\Lambda} = 0.029 \pm 0.019 \, (\rm{stat}) \pm 0.012 \, (\rm{syst}) \, , PΛˉ=0.003±0.023 (stat)±0.014 (syst) . P_{\bar{\Lambda}} = 0.003 \pm 0.023 \, (\rm{stat}) \pm 0.014 \,(\rm{syst}) \,. Furthermore, the results are shown as a function of the Feynman~xx~variable, transverse momentum, pseudorapidity and rapidity of the hyperons, and are compared with previous measurements
    corecore