2,170 research outputs found

    GeV Scale Asymmetric Dark Matter from Mirror Universe: Direct Detection and LHC Signatures

    Full text link
    Mirror universe is a fundamental way to restore parity symmetry in weak interactions. It naturally provides the lightest mirror nucleon as a unique GeV-scale asymmetric dark matter particle candidate. We conjecture that the mirror parity is respected by the fundamental interaction Lagrangian, and its possible soft breaking arises only from non-interaction terms in the gauge-singlet sector. We realize the spontaneous mirror parity violation by minimizing the vacuum Higgs potential, and derive the corresponding Higgs spectrum. We demonstrate that the common origin of CP violation in the visible and mirror neutrino seesaws can generate the right amount of matter and mirror dark matter via leptogenesis. We analyze the direct detections of GeV-scale mirror dark matter by TEXONO and CDEX experiments. We further study the predicted distinctive Higgs signatures at the LHC.Comment: 16pp. Plenary talk presented by HJH at the International Symposium on Cosmology and Particle Astrophysics (CosPA2011). To appear in the conference proceedings of IJMP. Minor refinement

    Prognostic Value of Survivin in Patients with Non-Small Cell Lung Carcinoma: A Systematic Review with Meta-Analysis

    Get PDF
    The potential prognostic value of survivin in resected non-small cell lung carcinoma (NSCLC) is variably reported. The objective of this study was to conduct a systematic review of literatures evaluating survivin expression in resected NSCLC as a prognostic indicator.Relevant literatures were identified using PubMed, EMBASE and Chinese Biomedicine Databases. We present the results of a meta-analysis of the association between survivin expression and overall survival (OS) in NSCLC patients. Studies were pooled and summary hazard ratios (HR) were calculated. Subgroup analyses and publication bias were also conducted. = 26.9%). Its effect also appeared significant when stratified according to the studies categorized by histological type, HR estimate, patient race, cutoff point (5%, 10%), detection methods and literature written language except for disease stage. Survivin was identified as a prognostic marker of advanced-stage NSCLC (HR = 1.93, 95%CI: 1.49-2.51), but not early-stage NSCLC (HR = 1.97, 95%CI: 0.76-5.14), in spite of the combined data being relatively small.This study shows that survivin expression appears to be a pejorative prognostic factor in terms of overall survival in surgically treated NSCLC. Large prospective studies are now needed to confirm the clinical utility of survivin as an independent prognostic marker

    Design Change Model for Effective Scheduling Change Propagation Paths

    Get PDF
    Changes in requirements may result in the increasing of product development project cost and lead time, therefore, it is important to understand how requirement changes propagate in the design of complex product systems and be able to select best options to guide design. Currently, a most approach for design change is lack of take the multi-disciplinary coupling relationships and the number of parameters into account integrally. A new design change model is presented to systematically analyze and search change propagation paths. Firstly, a PDS-Behavior-Structure-based design change model is established to describe requirement changes causing the design change propagation in behavior and structure domains. Secondly, a multi-disciplinary oriented behavior matrix is utilized to support change propagation analysis of complex product systems, and the interaction relationships of the matrix elements are used to obtain an initial set of change paths. Finally, a rough set-based propagation space reducing tool is developed to assist in narrowing change propagation paths by computing the importance of the design change parameters. The proposed new design change model and its associated tools have been demonstrated by the scheduling change propagation paths of high speed train’s bogie to show its feasibility and effectiveness. This model is not only supportive to response quickly to diversified market requirements, but also helpful to satisfy customer requirements and reduce product development lead time. The proposed new design change model can be applied in a wide range of engineering systems design with improved efficiency

    An influence of extreme southern hemisphere cold surges on the North Atlantic Subtropical High through a shallow atmospheric circulation

    Get PDF
    ABSTRACT: Previous studies have attributed interhemisphere influences of the atmosphere to the latitudinal propagation of planetary waves crossing the equator, to the triggering of equatorial Kelvin waves, or to monsoonal circulation. Over the American-Atlantic sector, such cross-equatorial influences rarely occur during boreal summer due to unfavorable atmospheric conditions. We have observed that an alternative mechanism provides an interhemisphere influence. When episodes of extreme cold surges and upper tropospheric westerly winds occur concurrently over southern hemisphere Amazonia, cold surges from extratropical South America can penetrate deep into southern Amazonia. Although they do not appear to influence upper tropospheric circulation of the northern hemisphere, extremely strong southerly cross-equatorial advection (>2σ standard deviations, or 2) of cold and dense air in the lower troposphere can reach as least 10°N. Such cold advection increases the northward cross-equatorial pressure gradient in the lower to middle troposphere, thus shallow northerly return flow below 500 hPa. This return flow and the strong lower tropospheric southerly cross-equatorial flow form an anomalous shallow meridional circulation spanning from southern Amazonia to the subtropical North Atlantic, with increased geopotential height anomalies exceeding +1σ to at least 18°N. It projects onto the southern edge of the North Atlantic Subtropical High (NASH), increasing its pressure and leading to equatorward expansion of NASH’s southern boundary. These anomalies enhance the NASH, leading to its equatorward expansion. These extreme cold surges can potentially improving the predictability of weather patterns of the tropical and subtropical Atlantic, including the variability of the NASH’s southern edge

    Finite-key analysis for quantum key distribution with discrete phase randomization

    Full text link
    Quantum key distribution(QKD) allows two remote parties to share information-theoretic secret keys. Many QKD protocols assume the phase of encoding state can be continuous randomized from 0 to 2 pi, which, however, may be questionable in experiment. This is particularly the case in the recently proposed twin-field(TF) QKD, which has received a lot of attention, since it can increase key rate significantly and even beat some theoretical rate-loss limits. As an intuitive solution, one may introduce discrete phase-randomization instead of continuous one. However, a security proof for a QKD protocol with discrete phase-randomization in finite-key region is still missing. Here we develop a technique based on conjugate measurement and quantum state distinguishment to ana-lyze the security in this case. Our result shows that TF-QKD with reasonable number of discrete random phases, e.g. 8 phases from {0, pi/4, pi/2, ..., 7pi/4}, can achieve satisfactory performance. More importantly, as a the first proof for TF-QKD with discrete phase-randomization in finite-key region, our method is also applicable in other QKD protocols.Comment: 1 figures,20 page

    Transforming Multidisciplinary Customer Requirements to Product Design Specifications

    Get PDF
    With the increasing of complexity of complex mechatronic products, it is necessary to involve multidisciplinary design teams, thus, the traditional customer requirements modeling for a single discipline team becomes difficult to be applied in a multidisciplinary team and project since team members with various disciplinary backgrounds may have different interpretations of the customers’ requirements. A new synthesized multidisciplinary customer requirements modeling method is provided for obtaining and describing the common understanding of customer requirements (CRs) and more importantly transferring them into a detailed and accurate product design specifications (PDS) to interact with different team members effectively. A case study of designing a high speed train verifies the rationality and feasibility of the proposed multidisciplinary requirement modeling method for complex mechatronic product development. This proposed research offersthe instruction to realize the customer-driven personalized customization of complex mechatronic product
    • …
    corecore