38 research outputs found

    New Application of Z‑Scheme Ag<sub>3</sub>PO<sub>4</sub>/g‑C<sub>3</sub>N<sub>4</sub> Composite in Converting CO<sub>2</sub> to Fuel

    No full text
    This research was designed for the first time to investigate the activities of photocatalytic composite, Ag<sub>3</sub>PO<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub>, in converting CO<sub>2</sub> to fuels under simulated sunlight irradiation. The composite was synthesized using a simple <i>in situ</i> deposition method and characterized by various techniques including Brunauer–Emmett–Teller method (BET), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV–vis diffuse reflectance spectroscopy (DRS), photoluminescence spectroscopy (PL), and an electrochemical method. Thorough investigation indicated that the composite consisted of Ag<sub>3</sub>PO<sub>4</sub>, Ag, and g-C<sub>3</sub>N<sub>4</sub>. The introduction of Ag<sub>3</sub>PO<sub>4</sub> on g-C<sub>3</sub>N<sub>4</sub> promoted its light absorption performance. However, more significant was the formation of heterojunction structure between Ag<sub>3</sub>PO<sub>4</sub> and g-C<sub>3</sub>N<sub>4</sub>, which efficiently promoted the separation of electron–hole pairs by a Z-scheme mechanism and ultimately enhanced the photocatalytic CO<sub>2</sub> reduction performance of the Ag<sub>3</sub>PO<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub>. The optimal Ag<sub>3</sub>PO<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub> photocatalyst showed a CO<sub>2</sub> conversion rate of 57.5 μmol<b>·</b>h<sup>–1</sup><b>·</b>g<sub>cat</sub><sup>–1</sup>, which was 6.1 and 10.4 times higher than those of g-C<sub>3</sub>N<sub>4</sub> and P25, respectively, under simulated sunlight irradiation. The work found a new application of the photocatalyst, Ag<sub>3</sub>PO<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub>, in simultaneous environmental protection and energy production

    The oxidative degradation of chitosan, (A) H<sub>3</sub>PW<sub>12</sub>O<sub>40</sub> (0.35 µmol), Na<sub>3</sub>PW<sub>12</sub>O<sub>40</sub> (0.35 µmol) and H<sub>2</sub>O<sub>2</sub> without any additives.

    No full text
    <p>(C) (TBA)<sub>3</sub>{PO<sub>4</sub>[WO(O<sub>2</sub>)<sub>2</sub>]<sub>4</sub>} (1.05 µmol), K<sub>2</sub>[W<sub>2</sub>O<sub>3</sub>(O<sub>2</sub>)<sub>4</sub>] (2.1 µmol) and H<sub>2</sub>O<sub>2</sub> without any additives. (D) Na<sub>2</sub>WO<sub>4</sub> (4.2 µmol), (NH<sub>4</sub>)<sub>2</sub>WO<sub>4</sub> (4. 2 µmol) and K<sub>2</sub>[W<sub>2</sub>O<sub>3</sub>(O<sub>2</sub>)<sub>4</sub>] (2.1 µmol). Under the same reaction conditions: H<sub>2</sub>O<sub>2</sub> (1 mL), H<sub>2</sub>O(5 mL), 20 min. (B) Recycling of the filtrate at 65°C, 1 mL H<sub>2</sub>O<sub>2</sub>.</p

    The characters of chitosan and the LMWSC, XRD patterns (A), and the effect of the reaction time on the Mv of LMWSC (B).

    No full text
    <p>The characters of chitosan and the LMWSC, XRD patterns (A), and the effect of the reaction time on the Mv of LMWSC (B).</p

    The chemical structure of peroxo species.

    No full text
    <p>The chemical structure of peroxo species.</p

    The catalytic activity of the filtrate and the catalyst.

    No full text
    <p>The filtrate (A) and the catalyst (B), 0.0125 mmol (TBA)<sub>3</sub>{PO<sub>4</sub>[WO(O<sub>2</sub>)<sub>2</sub>]<sub>4</sub>}, 1 mL H<sub>2</sub>O<sub>2</sub>, 65°C.</p

    The characterization of chitosan and the LMWSC, FTIR spectra (A) and DRS patterns (B).

    No full text
    <p>The characterization of chitosan and the LMWSC, FTIR spectra (A) and DRS patterns (B).</p

    The mechanism of degradation of chitosan.

    No full text
    <p>The mechanism of degradation of chitosan.</p

    Triptycene-Based Polymer-Incorporated Cd<i><sub>x</sub></i>Zn<sub>1–<i>x</i></sub>S Nanorod with Enhanced Interfacial Charge Transfer for Stable Photocatalytic Hydrogen Production in Seawater

    No full text
    Solar-driven hydrogen (H2) generation from seawater exhibits great economic value in addressing the urgent energy shortage yet faces challenges from the severe salt-deactivation effect, which could result in the consumption of photoinduced charges and decomposition of catalysts. Herein, a triptycene-based polymer was coated on the surface of a CdxZn1–xS nanorod to form a core–shell heterojunction (TCP@CZS) by using the in situ Suzuki reaction for photocatalytic H2 production from water/seawater splitting. The introduction of TCP can provide a large surface area, enrich the active site, and boost charge transfer for the proton reduction reaction. Benefiting from it, optimal TCP@CZS indicated a H2 evolution rate of 93.88 mmol h–1 g–1 with Na2S/Na2SO3 in natural seawater under simulated solar light irradiation, which was 2.2 and 1.1 times higher than that of pure Cd0.6Zn0.4S and that in pure water, respectively. Besides, the apparent quantum efficiency (AQE) of TCP@CZS-3 under 420 nm light irradiation was 22.6% in seawater. This work highlights the feasibility of the triptycene-based porous organic polymer as an efficient catalyst for solar energy conversion in seawater

    Synthesis, Characterization, and Activity Evaluation of DyVO<sub>4</sub>/g‑C<sub>3</sub>N<sub>4</sub> Composites under Visible-Light Irradiation

    No full text
    DyVO<sub>4</sub>/graphitic carbon nitride (DyVO<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub>) composite photocatalyst with visible-light response was prepared by a milling and heating treatment method. The synthesized powder was characterized by X-ray diffraction, thermogravimetry/differential thermal analysis, N<sub>2</sub> adsorption, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, and UV–vis diffuse reflection spectroscopy. The activity of composite photocatalyst DyVO<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub> for photodegradation of rhodamine B is much higher than that of either single-phase g-C<sub>3</sub>N<sub>4</sub> or DyVO<sub>4</sub>. The obviously increased performance of DyVO<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub> is mainly ascribed to the electron–hole separation enhancement at the interface of the two semiconductors, as proven by photoluminescence spectroscopy and photocurrent measurement. In addition, it is found that holes and <sup>•</sup>O<sub>2</sub><sup>–</sup> are the main active species in the photocatalytic oxidation of RhB solution in the presence of DyVO<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub> composite

    Ornithischian left ilia in lateral view.

    No full text
    <p>All figures are just outlines, similar but not identical to the original image. All figures are for illustrative purposes only. Outlines are not to scale. A1, <i>Heterodontosaurus tucki</i>, outlined from [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0144148#pone.0144148.ref045" target="_blank">45</a>]; A2, <i>Othnielia rex</i>, from [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0144148#pone.0144148.ref046" target="_blank">46</a>]; A3, <i>Hypsilophidon foxii</i>, outlined from [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0144148#pone.0144148.ref034" target="_blank">34</a>]; A4, <i>Hexinlusaurus multidens</i>, based on ZDMT 6001, outlined from [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0144148#pone.0144148.ref047" target="_blank">47</a>]; A5 <i>Agilisaurus louderbacki</i>, based on ZDMT 6011, outlined from [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0144148#pone.0144148.ref047" target="_blank">47</a>]; A6, <i>Jeholosaurus shangyuanensis</i>, based on IVPP V15939, outlined from [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0144148#pone.0144148.ref020" target="_blank">20</a>]; B1, <i>Tenontosaurus tilleti</i> outlined from [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0144148#pone.0144148.ref048" target="_blank">48</a>]; B2, <i>Dryosaurus altus</i>, based on HNM dy II, outlined from [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0144148#pone.0144148.ref049" target="_blank">49</a>]; B3, <i>Camptosaurus dispar</i>, outlined from [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0144148#pone.0144148.ref050" target="_blank">50</a>]; B4, <i>Iguanodon atherfieldensis</i>, outlined from [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0144148#pone.0144148.ref050" target="_blank">50</a>], 1990; B5, <i>Ouranosaurus nigeriensis</i>, outlined from [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0144148#pone.0144148.ref050" target="_blank">50</a>], 1990; C1, <i>Gryposaurus incurvimanus</i>, outlined from [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0144148#pone.0144148.ref051" target="_blank">51</a>]; C2, <i>Parasaurolophus cyrtocristatus</i>, based on FMNH P27393, outlined from [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0144148#pone.0144148.ref052" target="_blank">52</a>]; C3, <i>Corythosaurus casuarius</i>, outlined from [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0144148#pone.0144148.ref053" target="_blank">53</a>]; C4, <i>Gilmoreosaurus mongoliensis</i>, based on AMNH 6551, outlined from [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0144148#pone.0144148.ref052" target="_blank">52</a>]; C5, <i>Brachylophosaurus canadensis</i>, based on MOR794, outlined from [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0144148#pone.0144148.ref054" target="_blank">54</a>]; C6, <i>Edmontosaurus regalis</i>, based on ROM 5167, outlined from [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0144148#pone.0144148.ref051" target="_blank">51</a>]; C7, <i>Saurolophus osborni</i>, based on AMNH 5220, outlined from [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0144148#pone.0144148.ref051" target="_blank">51</a>]; C8, <i>Maiasaura peeblesorum</i>, based on MOR unnumbered, outlined from [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0144148#pone.0144148.ref054" target="_blank">54</a>]; C9, <i>Kritosaurus navajovius</i>, based on TMM 42309–2, outlined from [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0144148#pone.0144148.ref054" target="_blank">54</a>]; D1, <i>Homocephale calathocercos</i>, outlined from [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0144148#pone.0144148.ref021" target="_blank">21</a>]; E1, <i>Yinlong downsi</i>, based on IVPP V18637; E2, <i>Psittacosaurus neimongoliensis</i>, based on IVPP 12-0888-2, outlined from [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0144148#pone.0144148.ref055" target="_blank">55</a>]; E3, <i>Archaeoceratops oshimai</i>, based on IVPP V11114, outlined from [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0144148#pone.0144148.ref024" target="_blank">24</a>]; E4, <i>Auroraceratops rugosus</i>, outlined from [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0144148#pone.0144148.ref029" target="_blank">29</a>]; E5, <i>Protoceratops andrewsi</i>, outlined from [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0144148#pone.0144148.ref006" target="_blank">6</a>]; E6, <i>Leptoceratops gracillis</i>, based on NMC 8889, outlined from [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0144148#pone.0144148.ref056" target="_blank">56</a>]; E7, <i>Montanoceratops cerorhynchus</i>, based on AMNH 6466, outlined from [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0144148#pone.0144148.ref028" target="_blank">28</a>]; F1, <i>Centrosaurus</i>, outlined from [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0144148#pone.0144148.ref057" target="_blank">57</a>]; F2, <i>Chasmosaurus belli</i>, outlined from [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0144148#pone.0144148.ref058" target="_blank">58</a>]; F3, <i>Triceratops horridus</i>, based on YPM 1821, outlined from [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0144148#pone.0144148.ref059" target="_blank">59</a>]; F4, <i>Styracosaurus albertensis</i>, based on AMNH 5372, outlined from [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0144148#pone.0144148.ref060" target="_blank">60</a>]; upper: <i>Ischioceratops zhuchengensis</i>, based on ZCDM V0016.</p
    corecore