730 research outputs found

    Deterministic learning enhanced neutral network control of unmanned helicopter

    Get PDF
    In this article, a neural network-based tracking controller is developed for an unmanned helicopter system with guaranteed global stability in the presence of uncertain system dynamics. Due to the coupling and modeling uncertainties of the helicopter systems, neutral networks approximation techniques are employed to compensate the unknown dynamics of each subsystem. In order to extend the semiglobal stability achieved by conventional neural control to global stability, a switching mechanism is also integrated into the control design, such that the resulted neural controller is always valid without any concern on either initial conditions or range of state variables. In addition, deterministic learning is applied to the neutral network learning control, such that the adaptive neutral networks are able to store the learned knowledge that could be reused to construct neutral network controller with improved control performance. Simulation studies are carried out on a helicopter model to illustrate the effectiveness of the proposed control design

    UniWorld: Autonomous Driving Pre-training via World Models

    Full text link
    In this paper, we draw inspiration from Alberto Elfes' pioneering work in 1989, where he introduced the concept of the occupancy grid as World Models for robots. We imbue the robot with a spatial-temporal world model, termed UniWorld, to perceive its surroundings and predict the future behavior of other participants. UniWorld involves initially predicting 4D geometric occupancy as the World Models for foundational stage and subsequently fine-tuning on downstream tasks. UniWorld can estimate missing information concerning the world state and predict plausible future states of the world. Besides, UniWorld's pre-training process is label-free, enabling the utilization of massive amounts of image-LiDAR pairs to build a Foundational Model.The proposed unified pre-training framework demonstrates promising results in key tasks such as motion prediction, multi-camera 3D object detection, and surrounding semantic scene completion. When compared to monocular pre-training methods on the nuScenes dataset, UniWorld shows a significant improvement of about 1.5% in IoU for motion prediction, 2.0% in mAP and 2.0% in NDS for multi-camera 3D object detection, as well as a 3% increase in mIoU for surrounding semantic scene completion. By adopting our unified pre-training method, a 25% reduction in 3D training annotation costs can be achieved, offering significant practical value for the implementation of real-world autonomous driving. Codes are publicly available at https://github.com/chaytonmin/UniWorld.Comment: 8 pages, 5 figures. arXiv admin note: substantial text overlap with arXiv:2305.1882

    Volume Transfer: A New Design Concept for Fabric-Based Pneumatic Exosuits

    Full text link
    The fabric-based pneumatic exosuit is now a hot research topic because it is lighter and softer than traditional exoskeletons. Existing research focused more on the mechanical properties of the exosuit (e.g., torque and speed), but less on its wearability (e.g., appearance and comfort). This work presents a new design concept for fabric-based pneumatic exosuits Volume Transfer, which means transferring the volume of pneumatic actuators beyond the garments profile to the inside. This allows for a concealed appearance and a larger stress area while maintaining adequate torques. In order to verify this concept, we develop a fabric-based pneumatic exosuit for knee extension assistance. Its profile is only 26mm and its stress area wraps around almost half of the leg. We use a mathematical model and simulation to determine the parameters of the exosuit, avoiding multiple iterations of the prototype. Experiment results show that the exosuit can generate a torque of 7.6Nm at a pressure of 90kPa and produce a significant reduction in the electromyography activity of the knee extensor muscles. We believe that Volume Transfer could be utilized prevalently in future fabric-based pneumatic exosuit designs to achieve a significant improvement in wearability

    Occupancy-MAE: Self-supervised Pre-training Large-scale LiDAR Point Clouds with Masked Occupancy Autoencoders

    Full text link
    Current perception models in autonomous driving heavily rely on large-scale labelled 3D data, which is both costly and time-consuming to annotate. This work proposes a solution to reduce the dependence on labelled 3D training data by leveraging pre-training on large-scale unlabeled outdoor LiDAR point clouds using masked autoencoders (MAE). While existing masked point autoencoding methods mainly focus on small-scale indoor point clouds or pillar-based large-scale outdoor LiDAR data, our approach introduces a new self-supervised masked occupancy pre-training method called Occupancy-MAE, specifically designed for voxel-based large-scale outdoor LiDAR point clouds. Occupancy-MAE takes advantage of the gradually sparse voxel occupancy structure of outdoor LiDAR point clouds and incorporates a range-aware random masking strategy and a pretext task of occupancy prediction. By randomly masking voxels based on their distance to the LiDAR and predicting the masked occupancy structure of the entire 3D surrounding scene, Occupancy-MAE encourages the extraction of high-level semantic information to reconstruct the masked voxel using only a small number of visible voxels. Extensive experiments demonstrate the effectiveness of Occupancy-MAE across several downstream tasks. For 3D object detection, Occupancy-MAE reduces the labelled data required for car detection on the KITTI dataset by half and improves small object detection by approximately 2% in AP on the Waymo dataset. For 3D semantic segmentation, Occupancy-MAE outperforms training from scratch by around 2% in mIoU. For multi-object tracking, Occupancy-MAE enhances training from scratch by approximately 1% in terms of AMOTA and AMOTP. Codes are publicly available at https://github.com/chaytonmin/Occupancy-MAE.Comment: Accepted by TI

    Occ-BEV: Multi-Camera Unified Pre-training via 3D Scene Reconstruction

    Full text link
    Multi-camera 3D perception has emerged as a prominent research field in autonomous driving, offering a viable and cost-effective alternative to LiDAR-based solutions. However, existing multi-camera algorithms primarily rely on monocular image pre-training, which overlooks the spatial and temporal correlations among different camera views. To address this limitation, we propose a novel multi-camera unified pre-training framework called Occ-BEV, which involves initially reconstructing the 3D scene as the foundational stage and subsequently fine-tuning the model on downstream tasks. Specifically, a 3D decoder is designed for leveraging Bird's Eye View (BEV) features from multi-view images to predict the 3D geometry occupancy to enable the model to capture a more comprehensive understanding of the 3D environment. One significant advantage of Occ-BEV is that it can utilize a vast amount of unlabeled image-LiDAR pairs for pre-training. The proposed multi-camera unified pre-training framework demonstrates promising results in key tasks such as multi-camera 3D object detection and semantic scene completion. When compared to monocular pre-training methods on the nuScenes dataset, Occ-BEV demonstrates a significant improvement of 2.0% in mAP and 2.0% in NDS for 3D object detection, as well as a 0.8% increase in mIOU for semantic scene completion. codes are publicly available at https://github.com/chaytonmin/Occ-BEV.Comment: 8 pages, 5 figure
    corecore