21 research outputs found

    Virtual Assistant With Tappable User Interface

    Get PDF
    Virtual assistants that can respond to spoken queries are popular. However, in some situations, users may prefer to provide input via typing or other modalities, rather than voice. This disclosure describes a virtual assistant with a user interface that enables a user to provide spoken as well as typed input. A typeahead search is performed based on received partial input and tappable query suggestions are provided to the user. If the user selects a suggested query, the corresponding action is performed directly, without the user having to complete the query input

    Technical Report on Web-based Visual Corpus Construction for Visual Document Understanding

    Full text link
    We present a dataset generator engine named Web-based Visual Corpus Builder (Webvicob). Webvicob can readily construct a large-scale visual corpus (i.e., images with text annotations) from a raw Wikipedia HTML dump. In this report, we validate that Webvicob-generated data can cover a wide range of context and knowledge and helps practitioners to build a powerful Visual Document Understanding (VDU) backbone. The proposed engine is publicly available at https://github.com/clovaai/webvicob

    Laparoscopic Renal Denervation System for Treating Resistant Hypertension: Overcoming Limitations of Catheter-Based Approaches

    Get PDF
    Goal: In a pivotal clinical trial, the percutaneous catheter-based renal denervation system developed to treat resistant hypertension did not show effectiveness in reducing blood pressure because of its fundamental limitation to ablate deeper nerves present around the renal artery. Methods: We propose a new renal denervation strategy called laparoscopicdenervation system (LDS) based-on laparoscopy procedure to ablate the renal nerves completely but inhibit the thermal arterial damage.The system has flexible electrodes to bend around the arterial wall to ablate nervesThe simulation study using validated in-silico models evaluated the heat distributionon the outer arterial wall,and an acute animal study (swine model) was conducted to demonstrate the feasibility of LDS in vivo. Results: The simulation studyconfirmedthat LDS could localize the heat distributionbetween the electrode and the outer arterial wall. In the animal study, we could maximize nerve denervation by the localizing ablation energy within the renal nerves and achieve nerve denaturationand decrease in neural density by 20.78% (P < 0.001), while maintaining a constant tip temperature of 65 degrees C for the duration of 70 s treatment. The study confirmed intact lumen artery through histological analysis and acute reduction in systolic blood pressure by 9.55 mmHg (p < 0.001) Conclusion: The LDS presented here has potential to effectively and safely ablate the renal nerves, independent of anatomical variation and nerve distribution, to control hypertension in real clinical conditions. Significance: LDS approach is innovative, inventive, and presents a novel technique totreat hypertension.11Yscopu

    Relationship between Associated Neuropsychological Factors and Fall Risk Factors in Community-Dwelling Elderly

    No full text
    This study examined whether neuropsychological factors could affect fall risk factors in the community-dwelling elderly via correlation analysis. A total of 393 older adults (76.69 ± 6.01) participated in this study. Cognitive function, depression, fall efficacy, balance confidence, balance, gait, and muscle strength were evaluated, and the correlation between psychological factors and fall risk factors was analyzed. Additionally, a multiple regression analysis was conducted to determine whether or not there was a significant effect between psychological factors and fall risk factors. Analysis showed that the psychological factors examined were all significantly correlated with the fall risk factors. A correlation analysis between cognitive function and fall risk factors showed that the correlation coefficient of the 6-Meter Walk Test was highest; for depression and fall risk factors, the correlation coefficient of gait speed was highest; for fall efficacy and fall risk factors, the correlation coefficient of the 6-Meter Walk Test was highest; and for confidence in balancing and fall risk factors, the correlation coefficient of the 6-Meter Walk Test was highest. This study suggests that psychological factors affect fall risk factors in the community-dwelling elderly, and a multifaceted approach that includes psychological factors would be helpful in providing interventions for falls

    The Effect of Core Exercise Using Online Videoconferencing Platform and Offline-Based Intervention in Postpartum Woman with Diastasis Recti Abdominis

    No full text
    To investigate the efficacy of exercise intervention using a real-time video conferencing platform (ZOOM) on inter-recti distance, abdominal muscle thickness, static trunk endurance, and maternal quality of life, 37 women with diastasis recti between six months and one year postpartum were randomly divided into the online (n = 19) and offline (n = 18) groups. The online group underwent 40-min trunk stabilization exercise sessions twice a week for six weeks, through a real-time video conference platform, while the offline group attended the same program in person. The inter-recti distance and muscle thickness between the abdominal muscles were measured by rehabilitation ultrasound imaging, the Torso endurance test was used to compare the static trunk endurance, and the maternal quality of life questionnaire (MAPP-QOL, score) was applied. Significant improvements were observed in the inter-recti distance between the rectus abdominis, abdominal muscle thickness, static trunk endurance, and maternal quality of life in both groups (p &lt; 0.001); a more significant improvement was observed in the offline group. No significant differences were observed between groups except for the left rectus abdominis thickness and Psychological/Baby and Relational/Spouse-Partner subscale in the maternal quality of life index (p &gt; 0.05). Exercise interventions delivered in a real-time videoconferencing platform are effective at improving the inter-recti distance, trunk stability, and quality of life in postpartum women and may be an alternate to face-to-face intervention

    Effect of Microcurrent Stimulation on Pain, Shoulder Function, and Grip Strength in Early Post-Operative Phase after Rotator Cuff Repair

    No full text
    Background and Objectives: The purpose of this study was to investigate the effects of microcurrent stimulation on pain, shoulder function, and grip strength in patients with rotator cuff repair. Materials and Methods: This randomized single-blind controlled trial was conducted on inpatients of the rehabilitation department, and included 28 patients who underwent rotator cuff repair. Participants were randomly assigned to the experimental group (n = 14), treated with microcurrent stimulation, and the control group (n = 14), treated with false microcurrent stimulation. The microcurrent stimulation administered to the experimental group underwent general physical therapy and microcurrent stimulation three times a week for 4 weeks. Results: Changes in pain, range of motion in shoulder, simple shoulder test, and grip strength were assessed before and after the intervention. Both groups showed a significant decrease in pain and shoulder function (t = 27.412, 22.079, 19.079, and 18.561; p &lt; 0.001), and grip strength showed a significant increase (t = −8.251 and −9.946; p &lt; 0.001). The experimental group that underwent microcurrent stimulation exhibited a significant effect on pain, shoulder function, and grip strength compared with the control group that underwent false microcurrent stimulation (t = −2.17, −2.22, and 2.213; p = 0.039, 0.035, and 0.036). Conclusions: This study confirmed that microcurrent stimulation is effective for the treatment of rotator cuff repair patients

    Multi-model attribution of upper-ocean temperature changes using an isothermal approach

    No full text
    Both air-sea heat exchanges and changes in ocean advection have contributed to observed upper-ocean warming most evident in the late-twentieth century. However, it is predominantly via changes in air-ea heat fluxes that human-induced climate forcings, such as increasing greenhouse gases, and other natural factors such as volcanic aerosols, have influenced global ocean heat content. The present study builds on previous work using two different indicators of upper-ocean temperature changes for the detection of both anthropogenic and natural external climate forcings. Using simulations from phase 5 of the Coupled Model Intercomparison Project, we compare mean temperatures above a fixed isotherm with the more widely adopted approach of using a fixed depth. We present the first multi-model ensemble detection and attribution analysis using the fixed isotherm approach to robustly detect both anthropogenic and natural external influences on upper-ocean temperatures. Although contributions from multidecadal natural variability cannot be fully removed, both the large multi-model ensemble size and properties of the isotherm analysis reduce internal variability of the ocean, resulting in better observation-model comparison of temperature changes since the 1950s. We further show that the high temporal resolution afforded by the isotherm analysis is required to detect natural external influences such as volcanic cooling events in the upper-ocean because the radiative effect of volcanic forcings is short-lived.111Nsciescopu

    Towards a high precision robotic platform for neural interface implantation

    No full text
    1

    Development of a nitinol-actuated surgical instrument for laparoscopic renal denervation: feasibility test in a swine survival model

    No full text
    Purpose In this study, we developed a novel nitinol-actuated surgical instrument to conduct laparoscopic renal denervation for the treatment of resistant hypertension. We investigated whether shape and temperature settings of nitinol specimens fit well into the design goals. Furthermore, we conducted a pilot study to validate the mechanical and physiological performance of nerve ablation without damaging the renal artery. Method Tensile tests were performed to observe temperature-dependent thermomechanical properties and the original shape of nitinol specimens was set considering our design goal. We performed strain gage experiments to measure bending strain. We developed surgical instrument and operated laparoscopic renal denervation in a swine model. Subsequent impedance spectroscopy experiments were conducted to measure changes in impedance magnitudes during the operation and histological analyses were performed to visualize thermogenic damage to arteries and nerves. Results Tensile testing showed that the shape memory effect begins above 37 °C. Measured strains on nitinol surfaces were 2.10% ± 0.769%, below the strain limit of 8%. Impedance spectroscopy experiments showed decreases in magnitude in all six trials. After operation of laparoscopic renal denervation following the protocol, renal arteries and nerves were harvested and thermogenic damage was observed in nerves but not arteries. Conclusion We developed a novel nitinol-actuated surgical instrument with which to perform laparoscopic renal denervation. The feasibility of our device was verified using thermomechanical analyses of nitinol, and assessments of mechanical and physiological performance. Our device could be used in other laparoscopic procedures that require large degrees of freedom while restricting to trocar size
    corecore