20 research outputs found

    Enhanced <i>In Vitro</i> Biocompatibility of Chemically Modified Poly(dimethylsiloxane) Surfaces for Stable Adhesion and Long-term Investigation of Brain Cerebral Cortex Cells

    No full text
    Studies on the mammalian brain cerebral cortex have gained increasing importance due to the relevance of the region in controlling critical higher brain functions. Interactions between the cortical cells and surface extracellular matrix (ECM) proteins play a pivotal role in promoting stable cell adhesion, growth, and function. Poly­(dimethylsiloxane) (PDMS) based platforms have been increasingly used for on-chip <i>in vitro</i> cellular system analysis. However, the inherent hydrophobicity of the PDMS surface has been unfavorable for any long-term cell system investigations due to transitory physical adsorption of ECM proteins on PDMS surfaces followed by eventual cell dislodgement due to poor anchorage and viability. To address this critical issue, we employed the (3-aminopropyl)­triethoxysilane (APTES) based cross-linking strategy to stabilize ECM protein immobilization on PDMS. The efficiency of surface modification in supporting adhesion and long-term viability of neuronal and glial cells was analyzed. The chemically modified surfaces showed a relatively higher cell survival with an increased neurite length and neurite branching. These changes were understood in terms of an increase in surface hydrophilicity, protein stability, and cell–ECM protein interactions. The modification strategy could be successfully applied for stable cortical cell culture on the PDMS microchip for up to 3 weeks <i>in vitro</i>

    Fabrication, Characterization, and Biocompatibility of Polymer Cored Reduced Graphene Oxide Nanofibers

    No full text
    Graphene nanofibers have shown a promising potential across a wide spectrum of areas, including biology, energy, and the environment. However, fabrication of graphene nanofibers remains a challenging issue due to the broad size distribution and extremely poor solubility of graphene. Herein, we report a facile yet efficient approach for fabricating a novel class of polymer core-reduced graphene oxide shell nanofiber mat (RGO–CSNFM) by direct heat-driven self-assembly of graphene oxide sheets onto the surface of electrospun polymeric nanofibers without any requirement of surface treatment. Thus-prepared RGO–CSNFM demonstrated excellent mechanical, electrical, and biocompatible properties. RGO–CSNFM also promoted a higher cell anchorage and proliferation of human bone marrow mesenchymal stem cells (hMSCs) compared to the free-standing RGO film without the nanoscale fibrous structure. Further, cell viability of hMSCs was comparable to that on the tissue culture plates (TCPs) with a distinctive healthy morphology, indicating that the nanoscale fibrous architecture plays a critically constructive role in supporting cellular activities. In addition, the RGO–CSNFM exhibited excellent electrical conductivity, making them an ideal candidate for conductive cell culture, biosensing, and tissue engineering applications. These findings could provide a new benchmark for preparing well-defined graphene-based nanomaterial configurations and interfaces for biomedical applications

    Fabrication and Characterization of Three-Dimensional (3D) Core–Shell Structure Nanofibers Designed for 3D Dynamic Cell Culture

    No full text
    Three-dimensional elastic nanofibers (3D eNFs) can offer a suitable 3D dynamic microenvironment and sufficient flexibility to regulate cellular behavior and functional protein expression. In this study, we report a novel approach to prepare 3D nanofibers with excellent mechanical properties by solution-assisted electrospinning technology and in situ polymerization. The obtained 3D eNFs demonstrated excellent biocompatible properties to meet cell culture requirements under a dynamic environment in vitro. Moreover, these 3D eNFs also promoted human bone marrow mesenchymal stem cells (hMSCs) adhesion and collagen expression under biomechanical stimulation. The results demonstrated that this dynamic cell culture system could positively impact cellular collagen but has no significant effect on the proliferation of hMSCs grown in the 3D eNFs. This work may give rise to a new approach for constructing a 3D cell culture for tissue engineering

    Biocompatible, Free-Standing Film Composed of Bacterial Cellulose Nanofibers–Graphene Composite

    No full text
    In recent years, graphene films have been used in a series of wide applications in the biomedical area, because of several advantageous characteristics. Currently, these films are derived from graphene oxide (GO) via chemical or physical reduction methods, which results in a significant decrease in surface hydrophilicity, although the electrical property could be greatly improved, because of the reduction process. Hence, the comprehensive performance of the graphene films showed practical limitations in the biomedical field, because of incompatibility of highly hydrophobic surfaces to support cell adhesion and growth. In this work, we present a novel fabrication of bacterial cellulose nanofibers/reduced graphene oxide (BC-RGO) film, using a bacterial reduction method. Thus-prepared BC-RGO films maintained excellent hydrophilicity, while electrical properties were improved by bacterial reduction of GO films in culture. Human marrow mesenchymal stem cells (hMSCs) cultured on these surfaces showed improved cellular response with higher cell proliferation on the BC-RGO film, compared to free-standing reduced graphene oxide film without the nanoscale fibrous structure. Furthermore, the cellular adhesion and proliferation were even comparable to that on the tissue culture plate, indicating that the bacterial cellulose nanofibers play a critically contructive role in supporting cellular activities. The novel fabrication method greatly enhanced the biochemical activity of the cells on the surface, which could aid in realizing several potential applications of graphene film in biomedical area, such as tissue engineering, bacterial devices, etc

    High-Performance Transparent Ultrabroadband Electromagnetic Radiation Shielding from Microwave toward Terahertz

    No full text
    In the era of fifth-generation networks and Internet-of-Things, the use of multiband electromagnetic radiation shielding is highly desirable for next-generation electronic devices. Herein, we report a systematic exploration of optoelectronic behaviors of ultrathin-silver-based shielding prototype (USP) film structures at the nanometer scale, unlocking the transparent ultrabroadband electromagnetic interference (EMI) shielding from microwave to terahertz frequencies. A theoretical model is proposed to optimize USP structures to achieve increased transparency, whereby optical antireflection resonances are introduced in dielectrics in conjunction with remarkable EMI shielding capability. USP can realize a state-of-the-art effective electromagnetic radiation shielding bandwidth with measured frequencies from 8 GHz up to 2 THz. Experimental results show that a basic USP (dAg = 10 nm) offers an average shielding efficiency of ∼27.5 dB from the X- to Ka-bands (8–40 GHz) and maintains a stable shielding performance of ∼22.6 dB across a broad range of 0.5–2 THz, with a measured optical transmittance of ∼95.2%. This extraordinary performance of ultrathin-silver-based film structures provides a new ultrabroadband EMI shielding paradigm for potential applications in next-generation electronics

    Surface Chemical Modification of Poly(dimethylsiloxane) for the Enhanced Adhesion and Proliferation of Mesenchymal Stem Cells

    No full text
    The surface chemistry of materials has an interactive influence on cell behavior. The optimal adhesion of mammalian cells is critical in determining the cell viability and proliferation on substrate surfaces. Because of the inherent high hydrophobicity of a poly­(dimethylsiloxane) (PDMS) surface, cell culture on these surfaces is unfavorable, causing cells to eventually dislodge from the surface. Although physically adsorbed matrix proteins can promote initial cell adhesion, this effect is usually short-lived. Here, (3-aminopropyl)­triethoxy silane (APTES) and cross-linker glutaraldehyde (GA) chemistry was employed to immobilize either fibronectin (FN) or collagen type 1 (C1) on PDMS. The efficiency of these surfaces to support the adhesion and viability of mesenchymal stem cells (MSCs) was analyzed. The hydrophobicity of the native PDMS decreased significantly with the mentioned surface functionalization. The adhesion of MSCs was mostly favorable on chemically modified PDMS surfaces with APTES + GA + protein. Additionally, the spreading area of MSCs was significantly higher on APTES + GA + C1 surfaces than on other unmodified/modified PDMS surfaces with C1 adsorption. However, there were no significant differences in the MSC spreading area on the unmodified/modified PDMS surfaces with FN adsorption. Furthermore, there was a significant increase in cell proliferation on the PDMS surface with APTES + GA + protein functionalization as compared to the PDMS surface with protein adsorption only. Therefore, the covalent surface chemical modification of PDMS with APTES + GA + protein could offer a more biocompatible platform for the enhanced adhesion and proliferation of MSCs. Similar strategies can be applied for other substrates and cell lines by appropriate combinations of self-assembly monolayers (SAMs) and extracellular matrix proteins

    Synergistic Effects of Conductive Three-Dimensional Nanofibrous Microenvironments and Electrical Stimulation on the Viability and Proliferation of Mesenchymal Stem Cells

    No full text
    In recent years, three-dimensional (3D) scaffolds have proven to be highly advantageous in mammalian cell culture and tissue engineering compared to 2D substrates. Herein, we demonstrated the fabrication of novel 3D core–shell nanofibers (3D-CSNFs) using an improved electrospinning process combined with in situ surface polymerization. The obtained 3D nanofibrous scaffold displayed excellent mechanical and electrical properties. Moreover, the cotton-like 3D structure with large internal connected pores (20–100 μm) enabled cells to easily infiltrate into the interior of the 3D scaffold with a good spatial distribution to mimic the ECM-like cell microenvironments. Stable cell–fiber composite constructs were formed in the 3D-CSNFs with relatively higher adhesion and viability compared to 2D-CSNFs. Furthermore, the human mesenchymal stem cells (hMSCs) cultured on conductive polymer coated electrically active 3D nanofibers responded with a healthy morphology and anchorage on the fibers with relatively higher viability and proliferation under electrical stimulation (ES). This study demonstrates the successful fabrication of 3D-CSNFs and the constructive interaction of the 3D microenvironment and subsequent electrical stimulations on hMSCs, thereby holding promising potential in tissue engineering and regenerative therapies aided by electro-stimulation-based differentiation strategies

    <em>ABCB1</em> Variation and Treatment Response in AIDS Patients: Initial Results of the Henan Cohort

    Get PDF
    <div><p>HIV/AIDS has the highest mortality among infectious diseases in China. In ongoing efforts to alleviate this crisis, the national government has placed great emphasis on efforts in Henan province where HIV-infected former plasma donors in the 1990s contributed to AIDS becoming a public health crisis. Concomitant with a national initiative focusing the use of phamacogenetics for the better prediction of treatment response, we studied genetic variants with known pharmacokinetic phenotypes in a set of 298 HAART-treated (highly active antiretroviral therapy) patients infected with HIV from the Henan cohort. We measured the association of response to treatment, assessed as changes in CD4+ T cell counts after antiretroviral therapy, of five polymorphisms in four genes (<em>CYP2B6</em>, <em>ABCB1</em>/<em>MDR1</em>, <em>ABCG2,</em> and <em>ABCC4</em>) in which variation has been suggested to affect the pharmacokinetics of drugs commonly employed to treat HIV/AIDS. We show that genotyping for <em>ABCB1</em> variations (rs1045642 and rs2032582) may help predict HIV treatment response. We found variations in this gene have a significant association with outcome as measured by CD4+ T cell counts in a discovery subset (N = 197; odds ratio (OR) = 1.58; 95% CI 1.02–2.45), these results were confirmed in a validation subset of the cohort (N = 78; OR = 2.81; 95% CI 1.32–5.96). Exploratory analysis suggests that this effect may be specific to NVP (nevirapine) or 3TC (lamivudine) response. This publication represents the first genetic analysis in a continuing effort to study and assist the patients in a very large, unique, and historically significant HIV-AIDS cohort. Genotyping of AIDS patients for <em>ABCB1</em> variation may help predict outcome and potentially could help guide treatment strategies.</p> </div
    corecore