83 research outputs found

    Further Progress on the GM-MDS Conjecture for Reed-Solomon Codes

    Get PDF
    Designing good error correcting codes whose generator matrix has a support constraint, i.e., one for which only certain entries of the generator matrix are allowed to be non-zero, has found many recent applications, including in distributed coding and storage, multiple access networks, and weakly secure data exchange. The dual problem, where the parity check matrix has a support constraint, comes up in the design of locally repairable codes. The central problem here is to design codes with the largest possible minimum distance, subject to the given support constraint on the generator matrix. An upper bound on the minimum distance can be obtained through a set of singleton bounds, which can be alternatively thought of as a cut-set bound. Furthermore, it is well known that, if the field size is large enough, any random generator matrix obeying the support constraint will achieve the maximum minimum distance with high probability. Since random codes are not easy to decode, structured codes with efficient decoders, e.g., Reed-Solomon codes, are much more desirable. The GM-MDS conjecture of Dau et al states that the maximum minimum distance over all codes satisfying the generator matrix support constraint can be obtained by a Reed Solomon code. If true, this would have significant consequences. The conjecture has been proven for several special case: when the dimension of the code k is less than or equal to five, when the number of distinct support sets on the rows of the generator matrix m, say, is less than or equal to three, or when the generator matrix is sparsest and balanced. In this paper, we report on further progress on the GM-MDS conjecture. In particular, we show that the conjecture is true for all m less than equal to six. This generalizes all previous known results (except for the sparsest and balanced case, which is a very special support constraint).Comment: Submitted to ISIT 201

    Gabidulin Codes with Support Constrained Generator Matrices

    Get PDF
    Gabidulin codes are the first general construction of linear codes that are maximum rank distant (MRD). They have found applications in linear network coding, for example, when the transmitter and receiver are oblivious to the inner workings and topology of the network (the so-called incoherent regime). The reason is that Gabidulin codes can be used to map information to linear subspaces, which in the absence of errors cannot be altered by linear operations, and in the presence of errors can be corrected if the subspace is perturbed by a small rank. Furthermore, in distributed coding and distributed systems, one is led to the design of error correcting codes whose generator matrix must satisfy a given support constraint. In this paper, we give necessary and sufficient conditions on the support of the generator matrix that guarantees the existence of Gabidulin codes and general MRD codes. When the rate of the code is not very high, this is achieved with the same field size necessary for Gabidulin codes with no support constraint. When these conditions are not satisfied, we characterize the largest possible rank distance under the support constraints and show that they can be achieved by subcodes of Gabidulin codes. The necessary and sufficient conditions are identical to those that appear for MDS codes which were recently proven by Yildiz et al. and Lovett in the context of settling the GM-MDS conjecture

    Support Constrained Generator Matrices of Gabidulin Codes in Characteristic Zero

    Get PDF
    Gabidulin codes over fields of characteristic zero were recently constructed by Augot et al., whenever the Galois group of the underlying field extension is cyclic. In parallel, the interest in sparse generator matrices of Reed–Solomon and Gabidulin codes has increased lately, due to applications in distributed computations. In particular, a certain condition pertaining to the intersection of zero entries at different rows, was shown to be necessary and sufficient for the existence of the sparsest possible generator matrix of Gabidulin codes over finite fields. In this paper we complete the picture by showing that the same condition is also necessary and sufficient for Gabidulin codes over fields of characteristic zero.Our proof builds upon and extends tools from the finite-field case, combines them with a variant of the Schwartz–Zippel lemma over automorphisms, and provides a simple randomized construction algorithm whose probability of success can be arbitrarily close to one. In addition, potential applications for low-rank matrix recovery are discussed

    Further Progress on the GM-MDS Conjecture for Reed-Solomon Codes

    Get PDF
    Designing good error correcting codes whose generator matrix has a support constraint, i.e., one for which only certain entries of the generator matrix are allowed to be nonzero, has found many recent applications, including in distributed coding and storage, multiple access networks, and weakly secure data exchange. The dual problem, where the parity check matrix has a support constraint, comes up in the design of locally repairable codes. The central problem here is to design codes with the largest possible minimum distance, subject to the given support constraint on the generator matrix. An upper bound on the minimum distance can be obtained through a set of singleton bounds, which can be alternatively thought of as a cut-set bound. Furthermore, it is well known that, if the field size is large enough, any random generator matrix obeying the support constraint will achieve the maximum minimum distance with high probability. Since random codes are not easy to decode, structured codes with efficient decoders, e.g., Reed-Solomon codes, are much more desirable. The GM-MDS conjecture of Dau et al states that the maximum minimum distance over all codes satisfying the generator matrix support constraint can be obtained by a Reed Solomon code. If true, this would have significant consequences. The conjecture has been proven for several special case: when the dimension of the code k is less than or equal to five, when the number of distinct support sets on the rows of the generator matrix m, say, is less than or equal to three, or when the generator matrix is sparsest and balanced. In this paper, we report on further progress on the GM-MDS conjecture. 1. In particular, we show that the conjecture is true for all m less than equal to six. This generalizes all previous known results (except for the sparsest and balanced case, which is a very special support constraint)

    Optimum Linear Codes with Support Constraints over Small Fields

    Get PDF
    The problem of designing a linear code with the largest possible minimum distance, subject to support constraints on the generator matrix, has recently found several applications. These include multiple access networks [3], [5] as well as weakly secure data exchange [4], [8]. A simple upper bound on the maximum minimum distance can be obtained from a sequence of Singleton bounds (see (3) below) and can further be achieved by randomly choosing the nonzero elements of the generator matrix from a field of a large enough size

    Optimum Linear Codes with Support Constraints over Small Fields

    Get PDF
    We consider the problem of designing optimal linear codes (in terms of having the largest minimum distance) subject to a support constraint on the generator matrix. We show that the largest minimum distance can be achieved by a subcode of a Reed-Solomon code of small field size. As a by-product of this result, we settle the GM-MDS conjecture of Dau et. al. in the affirmative

    Linear Codes with Constrained Generator Matrices

    Get PDF
    Designing good error correcting codes whose generator matrix has a support constraint, i.e., one for which only certain entries of the generator matrix are allowed to be nonzero, has found many recent applications, including in distributed coding and storage, linear network coding, multiple access networks, and weakly secure data exchange. The dual problem, where the parity check matrix has a support constraint, comes up in the design of locally repairable codes. The central problem here is to design codes with the largest possible minimum distance, subject to the given support constraint on the generator matrix. When the distance metric is the Hamming distance, the codes of interest are Reed-Solomon codes, for which case, the problem was formulated as the "GM-MDS conjecture." In the rank metric case, the same problem can be considered for Gabidulin codes. This thesis provides solutions to these problems and discusses the remaining open problems.</p

    Support Constrained Generator Matrices of Gabidulin Codes in Characteristic Zero

    Get PDF
    Gabidulin codes over fields of characteristic zero were recently constructed by Augot et al., whenever the Galois group of the underlying field extension is cyclic. In parallel, the interest in sparse generator matrices of Reed–Solomon and Gabidulin codes has increased lately, due to applications in distributed computations. In particular, a certain condition pertaining to the intersection of zero entries at different rows, was shown to be necessary and sufficient for the existence of the sparsest possible generator matrix of Gabidulin codes over finite fields. In this paper we complete the picture by showing that the same condition is also necessary and sufficient for Gabidulin codes over fields of characteristic zero.Our proof builds upon and extends tools from the finite-field case, combines them with a variant of the Schwartz–Zippel lemma over automorphisms, and provides a simple randomized construction algorithm whose probability of success can be arbitrarily close to one. In addition, potential applications for low-rank matrix recovery are discussed

    Optimum Linear Codes with Support Constraints over Small Fields

    Get PDF
    The problem of designing a linear code with the largest possible minimum distance, subject to support constraints on the generator matrix, has recently found several applications. These include multiple access networks [3], [5] as well as weakly secure data exchange [4], [8]. A simple upper bound on the maximum minimum distance can be obtained from a sequence of Singleton bounds (see (3) below) and can further be achieved by randomly choosing the nonzero elements of the generator matrix from a field of a large enough size
    • …
    corecore