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ABSTRACT

Designing good error correcting codes whose generator matrix has a support con-
straint, i.e., one for which only certain entries of the generator matrix are allowed
to be nonzero, has found many recent applications, including in distributed coding
and storage, linear network coding, multiple access networks, and weakly secure
data exchange. The dual problem, where the parity check matrix has a support
constraint, comes up in the design of locally repairable codes. The central problem
here is to design codes with the largest possible minimum distance, subject to the
given support constraint on the generator matrix. When the distance metric is the
Hamming distance, the codes of interest are Reed-Solomon codes, for which case,
the problem was formulated as the "GM-MDS conjecture." In the rank metric case,
the same problem can be considered for Gabidulin codes. This thesis provides
solutions to these problems and discusses the remaining open problems.
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C h a p t e r 1

INTRODUCTION

1.1 Motivation
Linear codes are widely used in error correcting since they have efficient encoding
and decoding algorithms compared to the other codes. In a block code, a message
vector is encoded into a longer vector by introducing some redundancy so that it can
be resilient to the errors. For a linear block code, this encoding operation is a linear
map. In other words, for each entry in the encoded vector, a weighted sum of the
message entries is computed. This requires to have an access to each entry of the
message that has a nonzero weight. However, in some scenarios where the encoded
vector is computed distributively, theremay not be an access to eachmessage symbol
from each device that computes a single entry of the encoded vector due to some
physical constraints or privacy issues. Therefore, these constraints would require
some particular weights in the encoding operation to be zero. Hence, a linear code
with these constraints is needed to be designed in these scenarios.

1.2 Background
Linear Block Codes
A linear code C of length n and dimension k is a k dimensional linear space of the n
dimensional space Fn over a field F. The elements c ∈ C are called the codewords
of C. The encoding operation is a linear map, which maps a given message vector
m ∈ Fk to a codeword c ∈ C. The objective is to send the message m to a receiver
by transmitting the encoded codeword c through a noise channel. For an additive
noise channel, the receiver will receive the vector y = c + e and need to decode the
original message m.

The encoding operation in a linear code can be defined in terms of the generator
matrix G ∈ Fk×n of the code:

c = enc(m) = mG. (1.1)

The parity check matrix H ∈ F(n−k)×n is a full rank matrix such that for any
codeword c ∈ C,

HcT = 0. (1.2)
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Hence, we have that

GHT = 0. (1.3)

The code itself can be written as the row space of the generator matrix or the null
space of the parity check matrix:

C = rowsp(G) = null(H) (1.4)

i.e. the rows of G define a basis for the code.

The decoding operation usually depends on a distance metric. One such metric is
the Hamming distance, which is defined as

dH(C) = min
c 6=c′∈C

‖c− c′‖H (1.5)

where ‖ · ‖H is the Hamming weight, i.e. the number of nonzero entries. For linear
codes, it can be also written as

dH(C) = min
0 6=c∈C

‖c‖H . (1.6)

For a code with distance d, if ‖e‖H ≤ bd−1
2
c, the receiver can recover the message

uniquely. This distance is upper bounded by the Singleton bound in terms of n and
k:

dH(C) ≤ n− k + 1. (1.7)

The codes that achieve this upper bound are called Maximum Distance Separable
(MDS).

Another metric is the rank distance, which is defined in terms of a subfield F′ ⊂ F.
Note that the field F can be viewed as a vector space over the subfield F′. Then, the
rank distance is defined as

dR(C) = min
06=c∈C

dimF′(spanF′{c1, . . . , cn}) (1.8)

where c1, . . . , cn ∈ F represent the entries of c ∈ Fn. By fixing an ordered basis
of F over F′, the elements of F can be considered as vectors with entries from F′;
hence the codewords can be viewed as matrices over F′. Then, this definition of the
rank distance is equivalent to the minimum of the rank of the matrix representation
of a nonzero codeword.
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Notice that dimF′(spanF′{c1, . . . , cn}) can be upper bounded by the number of
nonzero ci’s, i.e. ‖c‖H . Hence, we have that

dR(C) ≤ dH(C) ≤ n− k + 1. (1.9)

Therefore, we have the same upper bound for the rank distance as well. The codes
that achieve a rank distance dR(C) = n− k+ 1 are called Maximum Rank Distance
(MRD).

Reed–Solomon Codes
Reed–Solomon codes are a family of algebraicMDS codes. Their generatormatrices
can be described by a Vandermonde matrix:

V =



1 1 · · · 1

x1 x2 · · · xn

x2
1 x2

2 · · · x2
n

... ... ...
xk−1

1 xk−1
2 · · · xk−1

n


(1.10)

where x1, . . . , xn ∈ F are distinct parameters. In a more general form, a generator
matrix of a Reed–Solomon code is

G = TV (1.11)

where T ∈ Fk×k is an invertible transformation matrix. Note that the matrix T

does not change the code itself but the encoding operation (it can be considered as
a change of basis for the code).

Gabidulin Codes
Gabidulin codes are the first discovered family of rank metric codes that are MRD.
Their generator matrices are in the form of

G = TM (1.12)

where T ∈ Fk×k is an invertible matrix and

M =



xq
0

1 xq
0

2 · · · xq
0

n

xq
1

1 xq
1

2 · · · xq
1

n

xq
2

1 xq
2

2 · · · xq
2

n
... ... ...

xq
k−1

1 xq
k−1

2 · · · xq
k−1

n


(1.13)
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where x1, . . . , xn ∈ F are linearly independent over the subfield F′ ⊂ F and q =

|F′|. This definition of Gabidulin codes, as originally defined by Delsarte [7] and
Gabidulin [8], is only over the finite fields. Later, they are extended to fields of
characteristic zero by replacing the matrix M above by

M =


θ0(x1) θ0(x2) · · · θ0(xn)

θ1(x1) θ1(x2) · · · θ1(xn)
... ... ...

θk−1(x1) θk−1(x2) · · · θk−1(xn)

 (1.14)

where θi(·) = θ(θi−1(·)) for i ≥ 1, θ0 is the identity function, and θ is an automor-
phism of the cyclic field extension F/F′ [9]. Note that in the case of finite fields,
setting θ(x) = xq gives the matrix in (1.13), where q = |F′|.

Conjectures on MDS codes
A linear code is desired to be MDS so that it can be more resilient to the errors.
However, MDS codes do not exist over every field. For example, the standard
Reed–Solomon codes require a field size of |F| ≥ n. The MDS conjecture specifies
a bound on the field sizes over which an MDS code exists:

Conjecture 1.1 (MDS Conjecture). There exists an MDS code of length n and
dimension k over a field F with k < |F| if and only if either

(i) n ≤ |F|+ 1 and 2 ≤ k ≤ |F| − 1 or

(ii) n ≤ |F|+ 2, k ∈ {3, |F| − 1}, and |F| is even.

It is well known that if either of the above conditions is satisfied, then there exist such
anMDS code, which is constructed using the generalized Reed–Solomon codes [10]
although the correctness of the opposite direction is still unknown.

On the other hand, the GM–MDS conjecture [11] considers the existence of MDS
codes when there are additional constraints on the generator matrix of the code.
When some particular entries of the generator matrix are required to be zero, a
necessary condition (MDS condition, see Definition A.2) for the existence of such
an MDS code is described in terms of the required zero pattern [2], [3], [11], [12].
Then, the question is for what field sizes there exists an MDS code with support
constrained generator matrices if these constraints satisfy the MDS condition. It is
shown that for very large fields (|F| ≥

(
n−1
k−1

)
), the MDS condition is also sufficient
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for the existence of MDS codes with constrained generator matrices [11]. The GM–
MDS conjecture claims the existence of such MDS codes over much smaller field
sizes (|F| ≥ n+ k − 1):

Conjecture 1.2 (GM–MDS conjecture). There exists an MDS code of length n and
dimension k over a field of size |F| ≥ n + k − 1 under a support constraint on the
generator matrix if this constraint satisfies the MDS condition.

1.3 Literature Review
The problem of designing good error correcting codes whose generator matrix has a
support constraint, i.e., one for which only certain entries of the generator matrix are
allowed to be nonzero, has found many recent applications, including in distributed
coding and storage [13], linear network coding [14], multiple access networks [15],
and weakly secure data exchange [16], [17]. The dual problem, where the parity
check matrix has a support constraint, comes up in the design of locally repairable
codes [18]–[20]. In this section, we will review some related problems on the linear
codes having a support constraint on their generator matrices.

Distributed Reed–Solomon Codes

destination

S1 S2 S3

v1 v2 v3 v4 v5

Figure 1.1: A simple multiple access network.

Halbawi et al. [13] and Dau et al. [15] consider a simple multiple access network
(SMAN), where a destination node receives information frommultiple source nodes
Si with information rates ri via a set of relay nodes vj . While Halbawi et al. [13]
assumes ri to be a positive integer, Dau et al. [15] further assumes that ri = 1 by
showing that the problem can be reduced to this case. If (linear) coding is employed
at the relay nodes, each relay node will convey a linear combination of the messages
coming only from the source nodes that it has access to, which puts a support
constraint on the generator matrix of the code. Furthermore, since the number of
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relay errors that can be tolerated is related to the minimum distance of the code, in
order to tolerate asmany relay errors as possible, one should design a linear codewith
the largest possible minimum distance under the support constraints on the generator
matrix dictated by the network. To achieve this, both of these works use so called
distributed Reed–Solomon codes, which are subcodes of Reed–Solomon codes with
a generator matrix having a particular zero pattern. However, the existence of such
a code relies on the GM–MDS conjecture.

Weakly Secure Cooperative Data Exchange

x1, x2, x3c1

x2, x3, x4c2

x3, x4, x5c3

t = 1 x1 + 2x2 + x3

t = 2 x2 + x3 + 2x4

t = 4 x2 + 2x3 + x4

t = 3 2x3 + x4 + x5

Γ =


1 2 1 0 0
0 1 1 2 0
0 0 2 1 1
0 1 2 1 0
... ... ... ... ...



Figure 1.2: At each time, a linear combination of packets is sent by one of the
clients. The corresponding encoding matrix is shown on the right.

In the weakly secure data exchange problem [16], [17], a number of clients ci want
to exchange a set of packets xi by revealing as little information as possible to
eavesdroppers. Each client holds a subset of the packets and at each time one of
the clients broadcasts a weighted sum of the packets that it possesses. An encoding
matrix Γ is defined by these weights such that Γij is the coefficient of the packet xj
transmitted at time t = j. Since each client has only a subset of the packets, some of
these entries are required to be zero, i.e. the matrix Γ has a support constraint. Yan
et al. [16] showed that minimizing the information that eavesdroppers can capture
is equivalent to maximizing the minimum distance of the linear code generated by
ΓT. Therefore, this problem is also equivalent to the GM–MDS conjecture [15].

Distributed Gabidulin Codes
In a random linear network, every node passes a random linear combination of the
messages it has received to the nodes to which it is connected. In this model, the
destination node will get a number of random linear combinations of the messages
sent fromdifferent sources. Silva et al. [21] showed that subspace codes orGabidulin
codes can be used to transfermessages through this networkmodel. In the absence of
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errors, the random linear combinations in the network cannot alter the transmitted
subspace. In the presence of errors, or adversaries, a few nodes may transmit
codewords that are not linear combinations of what they receive. This will alter the
subspace by a small rank (given by the number of erroneous nodes or adversaries)
and can be corrected by an MRD code. Halbawi et al. [14] studied a scenario,
where each of the source nodes has access to only a subset of all messages. They
showed that so called distributed Gabidulin codes, which are subcodes of Gabidulin
codes with generator matrices that have particular zero pattern (depending on what
subset each source has access to), can be used under this scenario. They showed
the existence and the code design only for networks that have up to 3 source nodes.
More specifically, they designed subcodes of Gabidulin codes with the largest rank
distance under a support constraint on the generator matrix such that the rows can
be divided into 3 groups, where the rows in each group have the same zero pattern.

Partial Results on the GM–MDS conjecture
In the past years, progress had been reported on the GM–MDS conjecture after Dau
et al. [11] showed that it is equivalent to a simplified conjecture that equates the
non-singularity of a matrix with some combinatorial inequalities (See Theorem 2.3).
The proof technique that was most commonly employed to attack this new algebraic-
combinatorial conjecture was proof by induction. However, the first attempts by
researchers were not able to perform the induction step, i.e. to reduce the problem
to one of a smaller size, in every case. Therefore, the previous works on this
conjecture either gave partial induction steps or were only able to prove it up to a
small parameter. For instance, Halbawi et al. [13] proved the statement form ≤ 3,
wherem is the number of distinct support sets on the rows of the generator matrix.
Yan et al. [17] described an induction step only for a special case. Heidarzadeh et
al. [22] proved the conjecture only for dimensions k ≤ 5. In our previous work [1],
the statement was proven for m ≤ 6, where m is defined as above. The main idea
there was to write a more general problem which enables us to reduce the problem
(i.e. apply the induction step) in much broader cases, which also constitutes the
main technique we later applied to prove the conjecture. Besides these attempts to
proving the conjecture, we should also mention that Halbawi et al. [23], [24] and
Song et al. [25] also studied the problem when the generator matrix is sparsest and
balanced (i.e. the numbers of zeros in each row (column) are as large as possible
and differ at most by 1) and established the conjecture in this special case.
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1.4 Summary of Contributions
This thesis provides a proof for the GM–MDS conjecture and a solution to the
rank metric analog of the same problem. In this section, an outline of the main
contributions is presented.

Reed–Solomon Codes with Support Constrained Generator Matrices
In Chapter 2, we study the problem of designing optimal linear codes (in terms of
having the largest minimum distance) subject to a support constraint on the generator
matrix. We show that the largest minimum distance can be achieved by a subcode
of a Reed—Solomon code of small field size and with the same minimum distance.
In particular, if the code has length n and maximum minimum distance d (over all
generator matrices with the given support), then an optimal code exists for any field
size q ≥ 2n− d. As a by-product of this result, we settle the GM–MDS conjecture
in the affirmative.

Gabidulin Codes with Support Constrained Generator Matrices
Gabidulin codes are the first general construction of linear codes that are maximum
rank distant (MRD). They have found applications in linear network coding, for
example, when the transmitter and receiver are oblivious to the inner workings
and topology of the network (the so-called incoherent regime). The reason is that
Gabidulin codes can be used to map information to linear subspaces, which in the
absence of errors cannot be altered by linear operations, and in the presence of
errors can be corrected if the subspace is perturbed by a small rank. Furthermore, in
distributed coding and distributed systems, one is led to the design of error correcting
codes whose generator matrix must satisfy a given support constraint.

In Chapter 3, we give a necessary and sufficient condition on the support of the
generator matrix that guarantees the existence of Gabidulin codes and general MRD
codes. This condition is identical to the one that appears in the GM–MDS con-
jecture when the distance metric is the Hamming distance. When this condition is
not satisfied, we characterize the largest possible rank distance under the support
constraints and show that they can be achieved by subcodes of Gabidulin codes.
When the rate of the code is not very high, this is achieved with the same field size
necessary for Gabidulin codes with no support constraint.

Gabidulin codes are also recently extended to the fields of characteristic zero by
Augot et al. [9], whenever the Galois group of the underlying field extension is
cyclic. However, the proof given in Chapter 3 does not apply to the fields of
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characteristic zero. Therefore, in Chapter 4, we complete the picture by showing
that the same condition is also necessary and sufficient for Gabidulin codes over
fields of characteristic zero. Our proof builds upon and extends tools from the
finite field case, combines them with a variant of the Schwartz–Zippel lemma
over automorphisms, and provides a simple randomized construction algorithm
whose probability of success can be arbitrarily close to one. In addition, potential
applications for low-rank matrix recovery are discussed.
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C h a p t e r 2

SUPPORT CONSTRAINED REED–SOLOMON CODES

2.1 Introduction
The problem of designing a linear code with the largest possible minimum distance,
subject to support constraints on the generator matrix, has recently found several
applications. These include multiple access networks [13], [15] as well as weakly
secure data exchange [16], [17]. In a simple multiple access network [13], [15], a
destination node receives information from multiple source nodes via a set of relay
nodes. If (linear) coding is employed at the relay nodes, each relay node will convey
a linear combination of the messages coming only from the source nodes that it
has access to, which puts a support constraint on the generator matrix of the code.
Furthermore, since the number of relay errors that can be tolerated is related to the
minimum distance of the code, in order to tolerate as many relay errors as possible,
one should design a linear codewith the largest possibleminimumdistance under the
support constraints on the generator matrix dictated by the network. In the weakly
secure data exchange problem [16], [17], a number of clients want to exchange a
set of packets by revealing as little information as possible to eavesdroppers. Each
transmission is done by one of the clients as a weighted sum of the packets that it
possesses. Therefore, one needs to design an encoding matrix representing these
weights under a support constraint. Yan et al. [16] showed that minimizing the
information that eavesdroppers can capture is equivalent to maximizing the mini-
mum distance of the linear code generated by the transpose of this encoding matrix,
which has support constraints. We should also mention that support constraints on
the generator matrix also arise in distributed storage scenarios where each of the
storage elements has access only to a subset of the information to be stored.

A simple upper bound on the minimum distance of a linear code subject to a support
constraint on the generator matrix can be obtained through a sequence of Singleton
bounds on its subcodes. This upper bound can be achieved (with high probability)
by randomly choosing the nonzero elements of the generator matrix from a field
of a large enough size. A natural question to ask is whether the above maximum
minimum distance can be achieved with a smaller field size, and in particular with
a structured, possibly algebraic, construction. This question is equivalent to a
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recently proposed conjecture by Dau et al. [11], which is commonly referred to
as the GM–MDS (generator matrix, maximum distance separable) conjecture [22].
It conjectures the necessary and sufficient conditions for the existence of a Reed–
Solomon code with dimension k and length n over a finite field Fq with q ≥ n+k−1

under a support constraint on the generator matrix, which enforces certain entries
of the generator matrix to be zero. These conditions are actually the same as the
necessary and sufficient conditions on the support of a k × n generator matrix for
the existence of a maximum distance separable (MDS) code in some field.

We should mention that when there is no support constraint on the generator matrix,
this problem is related to the well-known MDS conjecture, which states that there
exists an MDS code with dimension k and length n over Fq if and only if n ≤ q+ 1

for all q and 2 ≤ k ≤ q− 1, except when q is even and k ∈ {3, q− 1}, in which case
n ≤ q + 2. Although the converse part is still open, the achievability part of the
MDS conjecture is well known. In particular, it is known that if the above conditions
are satisfied, there exist (extended) generalized Reed–Solomon codes [11].

In the past years, progress had been reported on the GM–MDS conjecture after
Dau et al. [11] showed that it is equivalent to a simplified conjecture that equates
the non-singularity of a matrix with some combinatorial inequalities (See Theorem
2.3). The proof technique that was most commonly employed to attack this new
algebraic-combinatorial conjecture was proof by induction. However, researchers
were not able to perform the induction step, i.e. to reduce the problem to one of a
smaller size, in every case. Therefore, the previous works on this conjecture either
gave partial induction steps or were only able to prove it up to a small parameter.
For instance, Halbawi et al. [13] proved the statement for m ≤ 3, where m is the
number of distinct support sets on the rows of the generator matrix. Yan et al. [17]
described an induction step only for a special case. Heidarzadeh et al. [22] proved
the conjecture only for dimensions k ≤ 5. In our previous work [1], the statement
was proven for m ≤ 6, where m is defined as above. The main idea there was to
write a more general problem which enables us to reduce the problem (i.e. apply the
induction step) in much broader cases, which also constitutes the main technique
used here to prove the conjecture. Besides these attempts to proving the conjecture,
we should also mention that Halbawi et al. [23], [24] and Song et al. [25] also
studied the problem when the generator matrix is sparsest and balanced (i.e. the
numbers of zeros in each row (column) are as large as possible and differ at most by
1) and established the conjecture in this special case.
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In this chapter, we prove the GM–MDS conjecture, namely we show the existence
of Reed–Solomon codes in a field of size q ≥ n+k−1 with dimension k and length
n under support constraints on the generator matrix as long as those constraints do
not preclude the existence of an MDS code in every field. Furthermore, in general
(without any condition on these constraints), we show that the largest minimum
distance under support constraints on the generator matrix can be achieved by a
subcode of a Reed–Solomon code of small field size, in fact as low as 2n−d, where
n is the code length and d is the maximumminimum distance dictated by the support
constraints.

Remark: The results presented in this chapter were first announced in [2]. Concur-
rently and independently, the GM–MDS conjecture was proven by Lovett in [26].
The two proofs bear some resemblances and exhibit some differences. Both [2] and
[26] refer to and build on the earlier paper [1] and define a more general statement
than the GM–MDS conjecture that is more amenable to a proof by induction. These
statements are mathematically equivalent: In [2], they are expressed in terms of
the nonsingularity of a certain generalized Sylvester matrix, whereas in [26], they
are expressed as the linear independence of a certain collection of polynomials (the
reader may want to compare Theorem 3 in [2] and Theorem 1.7 in [26]). As a
consequence, the proof in [2] is more in the language of matrices and that of [26]
in the language of polynomials. There are differences in details of the proofs and
the order in which statements in the induction arguments are performed, but it is
possible to relate the proofs to one another.

Outline
The remainder of this chapter is organized as follows. In Section 2.2, we characterize
the generator matrices of subcodes of Reed–Solomon codes. In Section 2.3, we
define our main problem, namely maximizing the minimum distance d subject to
support constraints on the generator matrix, where we show the achievability of the
maximum possible minimum distance d by the subcodes of Reed–Solomon codes by
assuming the correctness of the GM–MDS conjecture, which is a special case of our
main problem (the MDS case). In Section 2.4, we prove the GM–MDS conjecture
by proposing a more general statement than an equivalent conjecture (simplified
GM–MDS conjecture) proposed in [11]. Our generalized theorem is not directly
related to the coding problem, but more readily lends itself to an inductive argument.
In Section 2.5, we discuss potential avenues to obtain explicit code constructions
as the GM–MDS conjecture only conjectures the existence of the Reed–Solomon
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codes. We conclude in Section 2.6.

Notation
Matrices are shown by bold capital letters and vectors are shown by bold lower case
letters. For n ≥ 0, we denote by [n] the set {1, 2, . . . , n} by admitting [0] = ∅. For
n ≥ 1, we write [θi]

n
i=1 to represent the ordered list of objects θ1, . . . , θn. For a finite

nonempty S ⊂ Z, [θi]i∈S is the ordered list of θi’s for i ∈ S in the ascending order
of their indices.

Given a collection of sets S1, S2, . . . , Sk, for any nonempty Ω ⊂ [k], SΩ represents
the intersection

⋂
i∈Ω Si.

F[x] represents the polynomial ring over the field F, i.e. the set of polynomials with
coefficients in F. F(x) represents the field of rational functions in x over the field
F, i.e. the set of functions that can be written as a ratio of two polynomials in F[x]

such that the denominator is not the zero polynomial.

When representing multivariate polynomials, for the ease of notation, we usually
omit the parameters (e.g. we write p instead of p(x1, . . . , xn)).

[n, k, d]q represent a linear code over Fq with length n, dimension k, and minimum
distance d. In the case of MDS codes, where d = n − k + 1, we omit d and write
[n, k]q.

2.2 Subcodes of Reed–Solomon Codes
An [n, `]q Reed–Solomon code can be generated by a Vandermonde matrix

V =


1 1 · · · 1

α1 α2 · · · αn
... ... ...

α`−1
1 α`−1

2 · · · α`−1
n

 ∈ F`×nq (2.1)

for distinct α1, . . . , αn ∈ Fq. Reed–Solomon codes have efficient decoders that can
correct up to bn−`+1

2
c errors.

For n ≥ ` ≥ k, [n, k, d]q subcodes of [n, `]q Reed–Solomon codes have generator
matrices of the following form:

G = T ·V (2.2)

where T ∈ Fk×`q is full rank and V is given in (2.1). Since the minimum distance
of a subcode is at least that of the parent code, we have that d ≥ n− `+ 1.
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We should mention that every [n, k, d]q linear code is actually a subcode of an [n, n]q

Reed–Solomon code. However, we are interested in the subcodes of Reed–Solomon
codes with the sameminimum distance as the Reed–Solomon code. In other words,
we want to design `, T, and V such that d = n− ` + 1. Note that in that case, we
can use the same decoder of the Reed–Solomon code with the generator matrix V

to correct up to bd
2
c errors.

2.3 Support Constraint on the Generator Matrix
In this section, first we will derive an upper bound on the minimum distance of a
linear code under support constraints on the generator matrix. Then, we will give the
GM–MDS conjecture of Dau et al., which claims the existence of Reed–Solomon
codes in any field of size q ≥ n+k− 1 with support constrained generator matrices
when this upper bound on the minimum distance is equal to the Singleton bound
(n − k + 1). Finally, we will use this conjecture to show that the largest minimum
distance is achieved by subcodes of Reed–Solomon codes for any support constraint.

Upper bound on the minimum distance
We will describe the support constraints on the generator matrix G through the
subsets S1, S2, . . . , Sk ⊂ [n] as follows:

∀i ∈ [k], ∀j ∈ Si, Gij = 0. (2.3)

For any nonempty Ω ⊂ [k], the rows of G indexed in Ω have zeros in all their entries
indexed in SΩ. Consider the submatrix of G consisting of the rows indexed in Ω

and the columns indexed in [n] − SΩ. The minimum distance d of G is at most
the minimum distance of the code generated by this submatrix, which is at most
n − |SΩ| − |Ω| + 1 by the Singleton bound. Hence, we have the following upper
bound on the minimum distance:

d ≤ n+ 1− max
∅6=Ω⊂[k]

(|SΩ|+ |Ω|). (2.4)

Note that this upper bound is less than or equal to the Singleton bound as |SΩ|+|Ω| ≥
k for Ω = [k].

Existence of MDS codes (GM–MDS conjecture)
For the existence of MDS codes, a straightforward necessary condition is that the
upper bound in (2.4) is equal to the Singleton bound, i.e.

max
∅6=Ω⊂[k]

(|SΩ|+ |Ω|) = k. (2.5)
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Theorem 2.1, which has been known as the GM–MDS conjecture, declares this as
also a sufficient condition for the existence of Reed–Solomon codes in any field of
size q ≥ n+ k − 1. The proof of Theorem 2.1 is given in Section 2.4.

Theorem 2.1 (GM–MDS Conjecture). Let S1, S2, . . . , Sk ⊂ [n] and q ≥ n+ k− 1

be a field size. Then, there exists an [n, k]q Reed–Solomon code with a generator
matrix satisfying (2.3) if and only if for any nonempty Ω ⊂ [k],

|SΩ|+ |Ω| ≤ k. (2.6)

�

Achievability for any support constraint
Theorem 2.1 can be extended to any support constraint, for which, the upper bound
is achieved by the subcodes of Reed–Solomon codes for any field size q ≥ 2n− d.

Theorem 2.2. Let S1, S2, . . . , Sk ⊂ [n],

` , max
∅6=Ω⊂[k]

(|SΩ|+ |Ω|) (2.7)

and q ≥ n + ` − 1 be a field size. Then, there exists an [n, k, d]q subcode of a
Reed–Solomon code that achieves d = n− `+ 1 with a generator matrix satisfying
(2.3). �

Proof. For Ω = [k], we have ` ≥ k. Define Sk+1, . . . , S` = ∅. We can now appeal
to Theorem 2.1 which states that there exists an [n, `]q Reed–Solomon code that
has a generator matrix G′ such that G′ij = 0 for j ∈ Si, i ∈ [`]. The subcode
with the generator matrix G consisting of the first k rows of G′ satisfies the desired
constraints and has the same minimum distance.

2.4 Proof of GM–MDS Conjecture
Simplified GM–MDS Conjecture
Dau et al. [11] showed that GM–MDS conjecture (Theorem 2.1) is equivalent to
the simplified conjecture below, which equates the non-singularity of a matrix with
some combinatorial inequalities. We should remark that for the ease of notation, we
replaced αj with−αj and put the columns in the reversed order in the matrix below
unlike the one given in [11] as they do not affect the singularity of the matrix.
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Theorem2.3. LetS1, S2, . . . , Sk ⊂ [n] such that |Si| = k−1. Then, the determinant
of the k × k matrix 

1
∑
j∈S1

αj · · ·
∏
j∈S1

αj

1
∑
j∈S2

αj · · ·
∏
j∈S2

αj

...
...

...
1
∑
j∈Sk

αj · · ·
∏
j∈Sk

αj


, (2.8)

where the ith row consists of the coefficients of
∏

j∈Si
(x + αj), is not the zero

polynomial if and only if for any nonempty Ω ⊂ [k],

|SΩ|+ |Ω| ≤ k. (2.9)

�

More general theorem
The inequalities in (2.9) are very similar to those given in Hall’s marriage theorem,
which is proven by induction by considering two cases: (i) the inequality is tight
for at least one Ω, (ii) all the inequalities are strict [27]. In order to apply a similar
proof technique to Theorem 2.3, it would be favorable to define a more general
statement like [1, Conjecture 2], where the first case can be proven more readily.
In fact, the induction step for the first case of [1, Conjecture 2] was already given
in [1, Lemma 2] of the same paper. However, the induction step for the second
case remained incomplete. In this section, we will propose a slightly more general
statement (Theorem 2.4) than [1, Conjecture 2], which gives the necessary and
sufficient conditions for the singularity of a more general matrix. It is also more
general than Theorem 2.3.

Since we are interested in whether a determinant of a matrix, which is a multivariate
polynomial, is the zero polynomial or not, it will be easier to work on the field of
rational functions and define the matrix in this field. Let K0 = Fq be a finite field
and Kn = Fq(α1, . . . , αn) be the field of rational functions in α1, . . . , αn over Fq.
For k ≥ m ≥ 1 and n ≥ 0, define

Sk,m,n =

{
[(Si, ri)]

m
i=1

∣∣∣∣∣∀i ∈ [m], Si ⊂ [n], ri ∈ Z+, |Si|+ ri ≤ k,

m∑
i=1

ri = k

}
.

(2.10)
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Define the matrix M ∈ Kk×k
n in terms of the parameters [(Si, ri)]

m
i=1 ∈ Sk,m,n as

follows (we will often write M[(Si, ri)]
m
i=1 to indicate its parameters):

M =



1
∑
j∈S1

αj . . .
∏
j∈S1

αj 0 · · ·

. . . . . .
0 1

∑
j∈S1

αj . . .
∏
j∈S1

αj 0 · · ·

...
1
∑
j∈Sm

αj . . .
∏
j∈Sm

αj 0 · · ·

. . . . . .
0 1

∑
j∈Sm

αj . . .
∏
j∈Sm

αj 0 · · ·



 r1

... rm

.

The rows are partitioned into m blocks and for i ∈ [m], the ith block is an ri × k
upper triangular Toeplitz matrix, whose first row consists of the coefficients of
the polynomial xk−|Si|−1

∏
j∈Si

(x + αj) in descending order with respect to the
degree. This matrix can be also thought of as a generalized Sylvester matrix that is
constructed by m polynomials while a classical Sylvester matrix is constructed by
the coefficients of only two polynomials (a similar definition of generalized Sylvester
matrix is given in [28]–[30]). The condition |Si| + ri ≤ k in (2.10) ensures that
the rows are not shifted too much to lose a nonzero entry in the last row of the ith
Toeplitz block. Also, notice that the bottom-right entry of the ith block is nonzero
iff we have the equality |Si|+ ri = k. We want to point out that the matrix M above
is slightly more general than the one given in [1] since it allows the bottom-right
entry to be zero unlike the one in [1], where |Si|+ ri = k is required for all i.

Theorem 2.4 gives necessary and sufficient conditions on the parameters [(Si, ri)]
m
i=1

for det M to be nonzero. Note that letting k = m, ri = 1, and |Si| = k − 1 in
Theorem 2.4 yields Theorem 2.3.

Theorem 2.4. Let k ≥ m ≥ 1, n ≥ 0, [(Si, ri)]
m
i=1 ∈ Sk,m,n. Then,

det M[(Si, ri)]
m
i=1 6= 0 if and only if for any nonempty Ω ⊂ [m],

|SΩ|+
∑
i∈Ω

ri ≤ max
i∈Ω

(|Si|+ ri). (2.11)

�

Remark: We should mention that Theorem 2.4 is mathematically equivalent to
Conjecture 2 in [26], where the nonsingularity of M is replaced by the linear
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independence of the polynomials with coefficients defined by the rows of M. Fur-
thermore, these polynomials in [26] are allowed to have repeated zeros at the origin.
In fact, the multiplicity of the zeros at the origin is equal to k − |Si| − ri in our
notation; hence the maximization on the right hand side of (2.11) can be described
in terms of the multiplicity of the common zeros at the origin of a collection of these
polynomials. Therefore, one can translate the inequalities in (2.11) to the one given
in [26].

Before moving to the proof of Theorem 2.4, we will give a useful lemma, where we
give an equivalent way of writing det M = 0 in terms of the polynomials that we
use when constructing M.

Lemma 2.1. Let [(Si, ri)]
m
i=1 ∈ Sk,m,n. For i ∈ [m], define

pi = xk−|Si|−ri
∏
j∈Si

(x+ αj). (2.12)

Then, det M[(Si, ri)]
m
i=1 = 0 if and only if there exist q1, . . . , qm ∈ Kn[x], not all

zero, such that deg qi ≤ ri − 1 for i ∈ [m] and
∑m

i=1 piqi = 0. �

Proof. For each qi, construct a row vector of size ri consisting of the coefficients
of xri−1, . . . , x, 1 in qi and merge them into one row vector y ∈ K1×k

n . Then,∑m
i=1 piqi = 0 iff y ·M = 0. The statement follows from det M = 0 iff there exists

nonzero y ∈ K1×k
n such that y ·M = 0.

Proof of Theorem 2.4
Proof of ( =⇒ )

Suppose that for some nonempty Ω ⊂ [m], the condition (2.11) is not true. Let
S0 = SΩ, r0 =

∑
i∈Ω ri, k′ = maxi∈Ω(|Si|+ ri). Then, |S0| + r0 > k′. Consider

the r0 rows of M in the blocks indexed in Ω. They all have zeros in their last
k − k′ entries. Let M0 ∈ Kr0×k′

n be the submatrix consisting of these rows without
including the last k − k′ columns. We will prove that rankM0 < r0, which implies
det M = 0. LetW = ((−αj)1−i)i∈[k′],j∈S0 be k′×|S0|Vandermonde matrix. Then,
M0 ·W = 0 because the polynomials with the coefficients in the rows of M0 vanish
at −αj for j ∈ S0. Hence,

rankM0 ≤ k′ − rankW ≤ k′ −min{k′, |S0|} < r0 (2.13)

which proves the first direction.
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Proof of (⇐= )

For the other direction, we will apply induction on the parameters (k,m, n)

considered in the lexicographical order. For m = 1, Sk,1,n = {[(∅, k)]} and
det M[(∅, k)] = det Ik = 1. For n = 0, all of Si’s are empty; hence, for Ω = [m],
(2.11) yieldsm = 1, for which, we already showed det M = 1.

For k ≥ m ≥ 2 and n ≥ 1, assume that the statement is true for parameters
(k′,m′, n′) that are smaller than (k,m, n) with respect to lexicographical order.

Take any [(Si, ri)]
m
i=1 ∈ Sk,m,n that satisfies the condition (2.11). We will prove that

det M[(Si, ri)]
m
i=1 6= 0 under three cases. In fact, under each case, we will try to

reduce a parameter and use the induction hypothesis.

1. There exists Ω1 ⊂ [m] such that 2 ≤ |Ω1| ≤ m− 1 and

|SΩ1 |+
∑
i∈Ω1

ri = max
i∈Ω1

(|Si|+ ri). (2.14)

2. There exists a unique i ∈ [m] such that |Si|+ ri = k.

3. Else (i.e. 1 and 2 are false).

In Case 1, 2, and 3, we will try to reduce the parameters m, k, and n, respectively.
Furthermore, in Case 1 and 2, det M will be written as a product of two quantities,
which are nonzero by the induction hypothesis; whereas in Case 3, it will be shown
that substitutingαj = 0 in det M results in a quantity that is nonzero by the induction
hypothesis.

Case 1:

In this case, we will try to reduce the problem into two smaller problems (with
smallerm).

Let Ω2 = {0} ∪ [m]− Ω1. Note that 2 ≤ |Ω1|, |Ω2| ≤ m− 1. Define

S0 = SΩ1 , r0 =
∑
i∈Ω1

ri. (2.15)

Then, (2.14) becomes
|S0|+ r0 = max

i∈Ω1

(|Si|+ ri). (2.16)

Define S ′i = Si − S0 for i ∈ Ω1. Now, we will show that

[(S ′i, ri)]i∈Ω1 ∈ Sr0,|Ω1|,n, [(Si, ri)]i∈Ω2 ∈ Sk,|Ω2|,n. (2.17)



20

The first one is true because by (2.15), r0 =
∑

i∈Ω1
ri and by (2.16), for any i ∈ Ω1,

|S ′i|+ ri = |Si|+ ri − |S0| ≤ r0. (2.18)

The second one is true because by (2.10), (2.15), and the definition of Ω2,

k =
m∑
i=1

ri = r0 +
∑

i∈[m]−Ω1

ri =
∑
i∈Ω2

ri, (2.19)

|Si|+ ri ≤ k for i ∈ [m]− Ω1 and |S0|+ r0 ≤ k due to (2.16).

By the induction hypothesis, the statement is true for [(S ′i, ri)]i∈Ω1 and [(Si, ri)]i∈Ω2 .
We will show that both satisfy the condition (2.11):

1. For any nonempty Ω ⊂ Ω1,

|S ′Ω|+
∑
i∈Ω

ri = |SΩ| − |S0|+
∑
i∈Ω

ri

≤ max
i∈Ω

(|Si|+ ri)− |S0|

= max
i∈Ω

(|S ′i|+ ri)

where the first and last equalities are by definition of theS ′i’s and the inequality
is due to (2.11).

2. For any nonempty Ω ⊂ Ω2, if 0 /∈ Ω, then Ω ⊂ [m] and (2.11) holds trivially.
Assume Ω = {0} ∪ Ω′ for some Ω′ ⊂ [m]− Ω1. Then,

|SΩ|+
∑
i∈Ω

ri = |S0 ∩ SΩ′ |+ r0 +
∑
i∈Ω′

ri

= |SΩ1∪Ω′|+
∑

i∈Ω1∪Ω′

ri

≤ max
i∈Ω1∪Ω′

(|Si|+ ri)

= max{max
i∈Ω1

(|Si|+ ri),max
i∈Ω′

(|Si|+ ri)}

= max{(|S0|+ r0),max
i∈Ω′

(|Si|+ ri)}

= max
i∈Ω

(|Si|+ ri)

where the first and last equalities are due to Ω = {0}∪Ω′, the second equality
is due to (2.15), the inequality is due to (2.11), and the fourth equality is due
to (2.16).
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Hence, both [(S ′i, ri)]i∈Ω1 and [(Si, ri)]i∈Ω2 satisfy (2.11) and by the induction hy-
pothesis, we have that

det M[(S ′i, ri)]i∈Ω1 6= 0, det M[(Si, ri)]i∈Ω2 6= 0. (2.20)

Now, we will use Lemma 2.1 to show that det M[(Si, ri)]
m
i=1 6= 0 (In fact, without

appealing to Lemma 2.1, one can show that this determinant is the product of the
two determinants in (2.20) by using row operations). Define for i ∈ {0} ∪ [m],

pi = xk−|Si|−ri
∏
j∈Si

(x+ αj) (2.21)

and for i ∈ Ω1,
p′i = xr0−|S

′
i|−ri

∏
j∈S′i

(x+ αj). (2.22)

Note that for i ∈ Ω1, pi = p′ip0.

Consider any q1, . . . , qm ⊂ Kn[x] such that deg qi ≤ ri − 1 for i ∈ [m] and∑m
i=1 piqi = 0. We need to prove that qi = 0 for all i ∈ [m]. Define

q0 =
∑
i∈Ω1

p′iqi. (2.23)

Note that deg q0 ≤ r0 − 1:

deg q0 ≤ max
i∈Ω1

(deg p′i + deg qi) (2.24)

≤ max
i∈Ω1

((r0 − ri) + (ri − 1)) (2.25)

= r0 − 1. (2.26)

Also, we can write that

0 =
m∑
i=1

piqi = p0

∑
i∈Ω1

p′iqi +
∑

i∈[m]−Ω1

piqi =
∑
i∈Ω2

piqi. (2.27)

Then, by Lemma 2.1, we get qi = 0 for all i ∈ Ω2. Then, q0 =
∑

i∈Ω1
p′iqi = 0.

Then, by Lemma 2.1, qi = 0 for all i ∈ Ω1. Hence, qi = 0 for all i ∈ [m]. By
Lemma 2.1, det M[(Si, ri)]

m
i=1 6= 0.

Case 2:

In this case, we will try to reduce the parameter k.

W.l.o.g., letm be the unique i such that |Si|+ ri = k. Then, for i ∈ [m− 1],

k = |Sm|+ rm > |Si|+ ri. (2.28)



22

Then, by the definition of M, the last column of M[(Si, ri)]
m
i=1 is all zero except the

last entry, which is
∏

j∈Sm
αj .

Notice that the upper left (k − 1)× (k − 1) block of M[(Si, ri)]
m
i=1 actually defines

another matrix M with different parameters. More precisely, we have that

det M[(Si, ri)]
m
i=1 = det M[(Si, r

′
i)]

m
i=1 ·

∏
j∈Sm

αj (2.29)

where r′m = rm − 1 and r′i = ri for i ∈ [m− 1] assuming that rm ≥ 2. (If rm = 1,
the first multiplier above would be replaced by det M[(Si, ri)]

m−1
i=1 , which would be

nonzero by the induction hypothesis, and we would be done.)

Note that [(Si, r
′
i)]

m
i=1 ∈ Sk−1,m,n since

∑m
i=1 r

′
i = k − 1 and |Si| + r′i ≤ k − 1 for

any i ∈ [m] due to (2.28).

By the induction hypothesis, the statement is true for [(Si, r
′
i)]

m
i=1. Hence, all we

need to prove is that [(Si, r
′
i)]

m
i=1 satisfies (2.11) to conclude by (2.29) that

det M[(Si, r
′
i)]

m
i=1 6= 0 =⇒ det M[(Si, ri)]

m
i=1 6= 0.

For any nonempty Ω ⊂ [m], ifm /∈ Ω, then (2.11) holds trivially. Assumem ∈ Ω.

|SΩ|+
∑
i∈Ω

r′i = |SΩ| − 1 +
∑
i∈Ω

ri (2.30)

≤ max
i∈Ω

(|Si|+ ri)− 1 (2.31)

= k − 1 (2.32)

= max
i∈Ω

(|Si|+ r′i) (2.33)

where the first equality is by definition of r′i, the inequality is due to (2.11), and the
second and last equalities are by (2.28).

Case 3:

In this case, we will try to reduce the parameter n by removing an element j from
all the sets containing it and substituting αj = 0 in the matrix M.

Since Case 1 is false, for any nonempty Ω ⊂ [m] such that |Ω| 6= 1,m, we have

|SΩ|+
∑
i∈Ω

ri ≤ max
i∈Ω

(|Si|+ ri)− 1. (2.34)

Since Case 2 is false, there exist at least two values of i such that |Si| + ri = k.
W.l.o.g., assume that

k = |Sm|+ rm = |Sm−1|+ rm−1. (2.35)
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If Sm = Sm−1, we get a contradiction in (2.11) for Ω = {m,m− 1}:

rm + rm−1 ≤ max{rm, rm−1}. (2.36)

Then, either Sm−1 6= [n] or Sm 6= [n]. W.l.o.g., we can assume that n /∈ Sm.

By the definition of matrix M, notice that substituting αn = 0 in the matrix
M[(Si, ri)]

m
i=1 will only remove the element n from all the Si’s containing n. Hence,

det M[(Si, ri)]
m
i=1|αn=0 = det M[(S ′i, ri)]

m
i=1 (2.37)

where S ′i = Si − {n}.

Note that [(S ′i, ri)]
m
i=1 ∈ Sk,m,n−1 since S ′i ⊂ [n − 1] and |S ′i| + ri ≤ |Si| + ri ≤ k

for i ∈ [m].

By the induction hypothesis, the statement is true for [(S ′i, ri)]
m
i=1. Hence, all we

need to prove is that [(S ′i, ri)]
m
i=1 satisfies (2.11) to conclude by (2.37) that

det M[(S ′i, ri)]
m
i=1 6= 0 =⇒ det M[(Si, ri)]

m
i=1 6= 0.

For |Ω| = 1, (2.11) holds trivially. For |Ω| 6= 1,m, we have

|S ′Ω|+
∑
i∈Ω

ri ≤ |SΩ|+
∑
i∈Ω

ri (2.38)

≤ max
i∈Ω

(|Si|+ ri)− 1 (2.39)

≤ max
i∈Ω

(|S ′i|+ ri) (2.40)

where the first and last inequalities follow trivially by the definition of the Si’s and
the second inequality is due to (2.34).

For Ω = [m], it is sufficient to show that k = maxi∈[m](|S ′i|+ ri), which is true
because

|S ′m|+ rm = |Sm|+ rm = k. (2.41)

2.5 Discussion of Explicit Constructions
Since a linear code achieving the maximum minimum distance under support con-
straints on the generator matrix can be designed as a subcode of a Reed–Solomon
code as described in the proof of Theorem 2.2, we can focus on designing Reed–
Solomon codes with support constraints satisfying the conditions in (2.6). As shown
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in [11], this is equivalent to finding distinct α1, α2, . . . , αn ∈ Fq such that the matrix
in (2.8) is nonsingular. However, our result only guarantees the existence of these
evaluation points. Hence, to design the code, explicit construction of them still
remains to be studied.

Since our proof is inductive, one may hope that it can be used to recursively generate
suitableαi. Unfortunately, we have not been able to do so. To see why, denote det M

by the multivariate polynomial F (α1, . . . , αn), and note that in Case 1 of the proof
of Theorem 2.4, F (α1, . . . , αn) is nonzero if two determinants, corresponding to
smaller problems (with smallerm), F1(α1, . . . , αn) andF2(α1, . . . , αn) are nonzero.
While each of these two determinants can then be studied separately, the fact that they
share variables means that we need to find αi that makes both determinants nonzero
simultaneously. This creates a roadblock stopping us from having a recursive
construction.

In the absence of an explicit construction, one can of course choose αi ∈ Fq at
random and evaluate det M until a nonzero determinant is found. Currently, we do
not know whether this will efficiently find a suitable set of αi’s or whether it will
require something akin to an exhaustive search.

Explicit constructions have been obtained in the literature for special instances of
the problem: notably in [23]–[25] when the support constraints are sparsest and
balanced (i.e. the numbers of zeros in each row (and column) are as large as
possible and differ at most by 1), and in [31] when the sets are further required to
satisfy |S[i]| ≤ k − i for every i ∈ [k].

2.6 Conclusion
We have established an upper bound on the minimum distance of linear codes with
support constraints on the generator matrix by applying a sequence of Singleton
bounds and have shown that it can be achieved by a subcode of a Reed–Solomon
code of the same minimum distance, as long as the field size is not smaller than
2n−d, by proving a more general statement than the GM–MDS conjecture (namely,
Theorem 2.4). The work presented here suggests some research directions that
should be fruitful to further explore. We briefly describe some of them.

First as discussed in Section V, our result only ensures the existence of evaluation
points α1, α2, . . . , αn for which we can design a subcode of a Reed–Solomon code.
Finding an efficient deterministic algorithm which explicitly finds these evaluation
points would be of interest. At present, the best one can do is to choose the
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α1, α2, . . . , αn at random and check whether the matrix M is full rank.

A second direction is the dual problem, where the support constraints are on the
parity check matrix. In other words, we would like to find a code with the largest
possibleminimumdistance, subject to support constraints on the parity checkmatrix.
A special case of this problem has been studied in the context of locally repairable
codes [18]–[20]. For example, when the repair sets are all of equal sizes, this
imposes a very particular structure on the parity check matrix and it has been shown
that the optimal code is a subcode of a Reed Solomon code of the same minimum
distance [18]. In the case of general support constraints, it is not hard to derive
an upper bound on the minimum distance that is achievable by a random code,
which requires large field sizes and potentially does not have an efficient decoder.
Therefore, a question one may ask is whether one can design an algebraic code on a
small field size with a minimum distance that achieves the upper bound. If the code
is MDS, the problem is clearly equivalent to the one we have studied here. However,
if the support constraints on the parity check matrix preclude the existence of aMDS
code, then the question of whether such an algebraic code exists remains open.

Another interesting question is whether it is possible to further reduce the field
size by considering other code families with or without sacrificing the minimum
distance. For instance, it might be worth looking at whether algebraic–geometric
codes can be designed with support constrained generator matrices with a desired
minimum distance and field size.

Finally, one may consider the problem of maximizing a different distance metric
(instead of Hamming distance) of the code under a given support constraint. For
instance, the rank metric is studied in [5], where it is shown that the same conditions
are necessary and sufficient for the existence of Gabidulin codes by extending the
proof used in this chapter. It remains open to study other distance metrics as well.
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C h a p t e r 3

SUPPORT CONSTRAINED GABIDULIN CODES OVER FINITE
FIELDS

3.1 Introduction
Linear codes are desired to have the maximumminimum distance, for some distance
measure, in order to be more resistant to errors in the channel. If the objective is to
detect and correct asmany error symbols as possible, the distancemeasure to be used
is the Hamming distance. The Singleton bound (n−k+1) is an upper bound on the
largest value for the minimumHamming distance dH a code can have, where n is the
length and k is the dimension of the code. Codes achieving it are called Maximum
Distance Separable (MDS) codes and a well known example for an MDS code is
the Reed–Solomon code. The necessary and sufficient conditions for the existence
of Reed–Solomon codes in terms of the zero structure of the generator matrix were
conjectured by Dau et al. [11], and referred to as the GM-MDS conjecture, which
was worked on by many researchers in [1], [13], [15], [17], [22]–[25], [31] and
finally proved in our previous work [2] and in the independent work of Lovett [26].

In some other scenarios, different distance metrics can be more desirable. For
instance, the rank distance, dR, is another metric which can be used to design linear
codes in random linear network coding or in scenarios where the transmitter and
receiver are oblivious to the topology and inner workings of the network (this is
often called the incoherent regime). To see why, suppose the code is defined over
an extension field Fqs , which can be thought of as a vector space over a base field
Fq, then the rank of a codeword in Fnqs is defined as the dimension of the span of
the entries of the codeword over Fq. Since the dimension of the span is at most the
number of nonzero elements, we have dR ≤ dH . Hence, a similar Singleton bound
(n− k+ 1) can be derived for the largest rank distance for a fixed code length n and
dimension k. A code achieving this is called a Maximum Rank Distance (MRD)
code and Gabidulin codes due to Delsarte [7] and Gabidulin [8] are the first general
constructions of it. These codes require a field size of qs, with s ≥ n. Very recently,
a new class of MRD codes, called twisted Gabidulin codes, have been constructed
by Sheekey [32], which have been further generalized in [33]–[35].

In a random linear network, every node passes a random linear combination of the
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messages it has received to the nodes to which it is connected. In this model, the
destination node will get a number of random linear combinations of the messages
sent from different sources. Silva et al. [21] showed that subspace codes or
Gabidulin codes can be used to transfer messages through this network model. In
the absence of errors, the random linear combinations in the network cannot alter
the transmitted subspace. In the presence of errors, or adversaries, a few nodes
may transmit codewords that are not linear combinations of what they receive. This
will alter the subspace by a small rank (given by the number of erroneous nodes or
adversaries) and can be corrected by an MRD code. Halbawi et al. [14] studied a
scenario, where each of the source nodes has access to only a subset of all messages.
They showed that subcodes of Gabidulin codes with generator matrices that have
a particular zero pattern (depending on what subset each source has access to) can
be used under this scenario. However, they showed the existence and the code
design only for networks that have up to 3 source nodes. More specifically, they
designed subcodes of Gabidulin codes with the largest rank distance under a support
constraint on the generator matrix such that the rows can be divided into 3 groups,
where the rows in each group have the same zero pattern.

In this chapter, we will give necessary and sufficient conditions for the existence of
Gabidulin codes with support constrained generator matrices. Furthermore, if these
constraints are not satisfied, we show that the largest possible rank distance can be
achieved by subcodes of Gabidulin codes. Our result generalizes the result in [14]
to any number of source nodes in the network. The necessary and sufficient condi-
tions on the support constraints to guarantee the existence of Gabidulin codes and
general MRD codes is identical to the conditions for MDS codes (that was recently
established in [2], [26] in the context of the GM-MDS conjecture). Furthermore,
the field size is now qs, with s ≥ max{n, k−1 + logq k}. When the rate of the code
is not too large (r = k

n
≤ 1− logq k−1

n
), there is no penalty in field size compared to

a Gabidulin code with no support constraints.

The rest of the chapter is organized as follows. In Section 3.2, after defining the
rank metric and characterizing the generator matrices of Gabidulin codes, we define
our problem, namely finding necessary and sufficient conditions for the existence of
the Gabidulin codes with support constrained generator matrices. Then, we solve
this problem by relying on a claim (Claim 3.1). Section 3.3 then proposes a purely
algebraic problem on linearized polynomials that contains a more general theorem
than Claim 3.1 and provides a detailed proof. The advantage of the generalization
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is that it lends itself to proof by induction. Finally, we conclude in Section 3.4.

3.2 Gabidulin Codes with Support Constraints
In this section, first we will define the rank distance of a linear code, show its
relation with the Hamming distance, and give its largest possible value in terms of
the length n and dimension k of the code. Secondly, we will write some necessary
conditions on the support of the generator matrix of a code for the rank distance
to achieve this largest possible value. Thirdly, we will characterize the generator
matrices of Gabidulin codes, which achieve the largest possible rank distance. Then,
we will prove that those necessary conditions are also sufficient for the existence
of Gabidulin codes, which is the main result in this chapter. Our proof relies on a
claim (Claim 3.1), which will be proven in Section 3.3, and constitutes the major
technical contribution of our work.

Rank distance
Let Fq be a finite field and Fqs be an extension field of Fq. Then, Fqs forms a linear
space over Fq. Hence, for any c = (c1, . . . , cn) ∈ Fnqs , we can define the rank of c as

rank(c) = dim(span{c1, . . . , cn}). (3.1)

Note that rank(c) is at most the Hamming weight of c, i.e. the number of nonzero
entries of c:

rank(c) ≤ ‖c‖H . (3.2)

Let C ⊂ Fnqs be a linear code with dim C = k. The rank distance of C is defined as

dR = min
06=c∈C

rank(c). (3.3)

Then, by (3.2), the rank distance is less than or equal to the Hamming distance:

dR ≤ dH . (3.4)

Hence, the Singleton bound on dH also holds for the rank distance: dR ≤ n−k+ 1.
The codes achieving this bound are called Maximum Rank Distance (MRD) codes.

Remark 3.1. An MRD–code is also an MDS–code, but the opposite is not true in
general.

Support constraints (zero constraints)
Suppose that we want to design an MRD–code under a support constraint on the
generator matrix G ∈ Fk×nqs . We describe these support constraints through the
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subsets Z1,Z2, . . . ,Zk ⊂ [n] as follows:

∀i ∈ [k], ∀j ∈ Zi, Gij = 0. (3.5)

It is well known [2], [11], [26] that a necessary condition for a code to be MDS is∣∣∣∣∣⋂
i∈Ω

Zi

∣∣∣∣∣+ |Ω| ≤ k (3.6)

for all nonempty Ω ⊂ [k]. Hence, (3.6) is also necessary for the existence of MRD–
codes by Remark 3.1. Later, we will show that it is also a sufficient condition to
design MRD–codes for fields of size qs, with s ≥ max{n, k − 1 + logq k}.

Note that for Ω = {i}, we have |Zi| ≤ k−1. In [11, Theorem 2], Dau et al. showed
that one can add elements from [n] to each of these subsets until each has exactly
k − 1 elements by preserving (3.6) (we also provide a different proof in Chapter
A). Note that this operation will only put more zero constraints on G, but will not
remove any. This means that the code we design under the new constraints will also
satisfy the original constraints. Therefore, without loss of generality, along with
(3.6), we will further assume that

|Zi| = k − 1, ∀i ∈ [k]. (3.7)

Gabidulin codes
Gabidulin codes were introduced in [7] and [8] and are the first general constructions
(meaning for any n and k) of an MRD code. Their generator matrices are of the
following form:

GGC =


αq

0

1 αq
0

2 · · · αq
0

n

αq
1

1 αq
1

2 · · · αq
1

n
... ... ...

αq
k−1

1 αq
k−1

2 · · · αq
k−1

n

 ∈ Fk×nqs (3.8)

where α1, α2, . . . , αn ∈ Fqs are linearly independent over Fq and hence, s ≥ n. We
remark that the linear independence of the αi’s over Fq is equivalent to the linear
independence of any k columns of GGC over Fqs [36, Lemma 3.51]. This matrix is
also known as the Moore matrix.

Furthermore, multiplying GGC by an invertible matrix from the left will not change
the code (i.e. the row span), but will only change the basis:

G = T ·GGC (3.9)
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where T ∈ Fk×kqs is full rank. Hence, G can be also used as a generator matrix of the
same Gabidulin code. This will allow us to introduce zeros at the desired positions
on the generator matrix.

Notice that if we define the polynomials

fi(x) =
k∑
j=1

Tijx
qj−1 (3.10)

for i ∈ [k], then the entries of G will be the values of the fi’s evaluated at the αj’s
i.e. Gij = fi(αj). Then, the support constraints in (3.5) on G will become root
constraints on the fi’s:

∀i ∈ [k], ∀j ∈ Zi, fi(αj) = 0. (3.11)

In view of the above, the question we would like to ask is whether under condition
(3.6), there exist an invertible matrix T and linearly independent α1, α2, . . . , αn ∈
Fqs such that (3.11) holds. In other words, since T is invertible, G has the same
MRD property of GGC, and also satisfies the support constraints in (3.5).

We should mention that a similar question for the existence of MDS codes with
support constraints on the generator matrix was asked by [11] and was referred to
as the GM–MDS conjecture. This was recently resolved in [2] and [26], where it
was shown that under (3.6), MDS codes with small fields size could be constructed
using Reed–Solomon codes. This chapter can be viewed as an extension of that
result to rank-metric codes and Gabidulin codes.

Example
Let q = 2, s = 4, k = 3, n = 4. Suppose we have the following support constraints:
Z1 = {1, 2},Z2 = {2, 3},Z3 = {3, 4}, i.e.,

G =

0 0 × ×
× 0 0 ×
× × 0 0

 . (3.12)

Note that these constraints satisfy (3.6). We need to find α1, α2, α3, α4 ∈ F16 that
are linearly independent over F2 and an invertible matrix T ∈ F3×3

16 such that

T ·

α1 α2 α3 α4

α2
1 α2

2 α2
3 α2

4

α4
1 α4

2 α4
3 α4

4

 =

0 0 × ×
× 0 0 ×
× × 0 0

 . (3.13)
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The following matrix satisfies these zero constraints (later, we will show that this
matrix is actually unique up to a scaling):

T =

α1α2(α1 + α2) α2
1 + α2

2 + α1α2 1

α2α3(α2 + α3) α2
2 + α2

3 + α2α3 1

α3α4(α3 + α4) α2
3 + α2

4 + α3α4 1

 . (3.14)

Let us choose α1 = 1, α2 = a, α3 = a2, α4 = a3 in F16 with the primitive polyno-
mial a4 + a+ 1. Then, they are linearly independent over F2 and det T = a13 6= 0;
so, T is invertible. Therefore,

G =

 0 0 a10 a3

a7 0 0 a14

a5 a11 0 0

 (3.15)

is the generator matrix for a Gabidulin code, which satisfies the support constraints.

Note that there are other choices of the αi that can solve our problem, too. However,
the primary focus of this chapter will be to show the existence of such a choice in
general.

Linearized polynomials
Polynomials in the form of (3.10) are called linearized polynomials (q-polynomials)
and it is beneficial to give some of their properties before moving forward. First,
we should note that for any a, b ∈ Fqs and i ≥ 0, we have that (a+ b)q

i
= aq

i
+ bq

i ,
which is commonly referred to as the Freshman’s Dream [37]. Furthermore, for any
γ ∈ Fq, we have that γq

i
= γ. Therefore, any linearized polynomial in the form of

f(x) =
d∑
i=0

cix
qi , ci ∈ Fqs (3.16)

is actually a linear map f : Fqs → Fqs when Fqs is considered as a linear space over
Fq. Hence, the roots of f form a subspace over Fq.

Conversely, it can be shown that for any subspace V ⊂ Fqs , the polynomial

f(x) =
∏
β∈V

(x− β) (3.17)

is a linearized polynomial, i.e. after expanding the product, the monomials whose
exponent is not a power of q will vanish [36, Theorem 3.52].

The q-degree of the linearized polynomial f in (3.16) is defined as degq f = d if
cd 6= 0. Then, the q-degree of f in (3.17) can be expressed as degq f = dimV .
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We will now move on to our main problem and later revisit linearized polynomials
in Section 3.3, where more of their properties will be given.

Existence of Gabidulin codes
Note that by the definition in (3.10), we have degq fi ≤ k − 1. Furthermore, since
the αj’s are assumed to be linearly independent, by (3.7) and (3.11), each fi is
enforced to have |Zi| = k − 1 linearly independent roots. Therefore, the f1, . . . , fk

are uniquely defined up to a scaling, and so in monic form

fi(x) =
∏

β∈span{αj :j∈Zi}

(x− β), (3.18)

which, in turn, uniquely determines all the entries of T in terms of α1, . . . , αn due
to (3.10).

Then, the problem becomes finding linearly independent α1, . . . , αn ∈ Fqs over Fq
such that det T 6= 0. In other words, we need to find α1, . . . , αn ∈ Fqs such that

F (α1, . . . , αn) , F1(α1, . . . , αn)F2(α1, . . . , αn) 6= 0 (3.19)

where

F1(α1, . . . , αn) = det T (3.20)

F2(α1, . . . , αn) =

∣∣∣∣∣∣∣∣∣∣
αq

0

1 αq
0

2 · · · αq
0

n

αq
1

1 αq
1

2 · · · αq
1

n
... ... ...

αq
n−1

1 αq
n−1

2 · · · αq
n−1

n

∣∣∣∣∣∣∣∣∣∣
(3.21)

because αi’s are linearly independent if and only if F2(α1, . . . , αn) 6= 0 [36,
Lemma 3.51].

It is known, by the Schwartz-Zippel Lemma, that there exist such αj’s in Fqs if F is
not the zero polynomial and for all j ∈ [n], degαj

F < qs. Note that F2 is not the
zero polynomial since the coefficient of the monomial

∏n
i=1 α

qi−1

i in F2 is 1 because
it can only be obtained through multiplication of the diagonals. Furthermore, if
Claim 3.1 below is true, we can conclude that F is not the zero polynomial.

Claim 3.1. det T is not the zero polynomial if (3.6) is satisfied. �

We will give the proof of Claim 3.1 later in Section 3.3 by proving a slightly more
general statement. Therefore, in this section, we will proceed by assuming that it is
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true. Then, F is not the zero polynomial and the only question that remains is “what
is the largest value of degαj

F over all j ∈ [n]?”, whose answer, in turn, can be used
as a sufficient lower bound on the size of the extension field where such αj’s exist.

Notice from (3.21) that for a fixed αj , the degree of F2 as a polynomial in αj is

degαj
F2 = qn−1.

Now, we will compute degαj
F1. From (3.10), recall that for any i, ` ∈ [k], Ti` is

the coefficient of xq`−1 in fi(x). Since fi(x) is monic, Tik = 1. For ` < k, Ti`

is a polynomial in αj and degαj
Ti` ≤ degαj

fi(x) (when writing degαj
fi(x), we

consider fi(x) as a polynomial in αj).

To find degαj
fi, consider the definition of fi in (3.18). Suppose that j ∈ Zi

(otherwise, degαj
fi = 0). Let Z ′i = Zi − {j} and define f ′i as

f ′i(x) =
∏

β∈span{αj′ :j
′∈Z′i}

(x− β) (3.22)

which is a linearized polynomial with degq f
′
i = |Z ′i| = k − 2 and hence as a usual

polynomial degx f
′
i(x) = qk−2. Since j /∈ Z ′i, f ′i(x) is independent of αj; therefore,

we can also write degαj
f ′i(αj) = qk−2. Furthermore, we can write that

fi(x) =
∏

β∈span{αj′ :j
′∈Zi}

(x− β) (3.23)

=
∏
γ∈Fq

∏
β∈span{αj′ :j

′∈Z′i}

(x− γαj − β) (3.24)

=
∏
γ∈Fq

f ′i(x− γαj) (3.25)

=
∏
γ∈Fq

(f ′i(x)− γf ′i(αj)) (3.26)

= (f ′i(x))q − (f ′i(αj))
q−1f ′i(x) (3.27)

where the last step is because of the identity
∏

γ∈Fq
(x− aγ) = xq − aq−1x.

Hence, degαj
Ti` ≤ degαj

fi(x) ≤ (q − 1) degαj
f ′i(αj) = (q − 1)qk−2. Then,

degαj
F1 = degαj

det T (3.28)

≤ max
σ∈Sk

k∑
`=1

degαj
Tσ(`),` (3.29)

≤ (k − 1)(q − 1)qk−2 (3.30)
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where Sk denotes the set of permutations of [k] and in the last inequality, recall that
Tik = 1, whose degree is 0. As a result,

degαj
F ≤ qn−1 + (k − 1)(q − 1)qk−2. (3.31)

So, if the field size is larger than this bound, i.e. qs > qn−1 + (k − 1)(q − 1)qk−2,
then there exist α1, . . . , αn ∈ Fqs such that F (α1, . . . , αn) 6= 0. As a result, we have
the following theorem. Note that if s ≥ n and s ≥ k − 1 + logq k, then

qs = qs−1+(q−1)qs−1 ≥ qn−1+(q−1)kqk−2 > qn−1+(k−1)(q−1)qk−2. (3.32)

Theorem 3.1. For any s ≥ max{n, k − 1 + logq k}, if (3.6) is satisfied, then there
exists a Gabidulin code in Fqs of length n and dimension k such that its generator
matrix satisfies the support constraints in (3.5). �

Subcodes of Gabidulin codes
If the necessary and sufficient condition in (3.6) is not satisfied, we cannot have an
MDS code with the prescribed support constraints, and by fiat we cannot have an
MRD code or a Gabidulin code. However, we can still ask whether a code with the
largest possible rank distance can be achieved. In fact, we can show that the largest
rank distance can be achieved by subcodes of Gabidulin codes for a large enough
field size. In [2], the following upper bound on the Hamming distance is noted:

dH ≤ n− `+ 1 (3.33)

where

` , max
∅6=Ω⊂[k]

(∣∣∣∣∣⋂
i∈Ω

Zi

∣∣∣∣∣+ |Ω|

)
≥ k. (3.34)

Since the rank distance of the code is upper bounded by the Hamming distance, we
have that

dR ≤ n− `+ 1. (3.35)

Theorem 3.2. Suppose s ≥ max{n, `−1 + logq `}. Then, there exists a subcode of
a Gabidulin code inFqs with length n, dimension k, and rank distance dR = n−`+1

such that its generator matrix satisfies (3.5). �

Proof. Define Zk+1 = · · · = Z` = ∅. Then, for any nonempty Ω ⊂ [`],∣∣∣∣∣⋂
i∈Ω

Zi

∣∣∣∣∣+ |Ω| ≤ `. (3.36)
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Hence, by Theorem 3.1, there exists a Gabidulin code of dimension ` with an `× n
generator matrix G having zeros dictated by Z1, . . . ,Z`. Since it is an MRD–code,
its rank distance is n− `+ 1. The first k rows of G will generate a subcode whose
rank distance dR is as good as the Gabidulin code: dR ≥ n − ` + 1. Hence, this
subcode achieves the largest possible rank distance given in (3.35).

3.3 Proof of Claim 3.1 (and More)
In this section, first we will extend the definition of linearized polynomials by
allowing their coefficients to be multivariate polynomials. Then, we will propose a
more general statement than Claim 3.1, namely Theorems 3.3.A and 3.3.B, which, in
fact, arise when trying to apply a proof by induction to Claim 3.1. Our generalization
will be written in two different forms. Theorem 3.3.A will be in terms of linearized
polynomials, whereas Theorem 3.3.B will be in terms of matrices. However, both
are equivalent and more general than Claim 3.1. We will give a sketch of the proof
in the language of matrices while the detailed proof will be given in the language of
polynomials. We should emphasize that the material presented here in the matrix
language is only for a better illustration of Theorem 3.3.A.

Problem Setup
Consider a finite field Fq and an extension field R0 = Fqs . For n ≥ 1, let
Rn , Fqs [x1, . . . , xn] be the ring of multivariate polynomials in the indeterminates
x1, x2 . . . , xn over Fqs .

Recall that the notationRn[x] denotes the ring of polynomials in the indeterminate x,
whose coefficients are drawn from Rn (the coefficients are multivariate polynomials
in x1, . . . , xn), i.e.,

Rn[x] ,

{
d∑
i=0

cix
i

∣∣∣∣∣d ≥ 0, c0, . . . , cd ∈ Rn

}
. (3.37)

The set of linearized polynomials over Rn is a subset of Rn[x], which we define as:

Ln ,

{
d∑
i=0

cix
qi

∣∣∣∣∣d ≥ 0, c0, . . . , cd ∈ Rn

}
⊂ Rn[x]. (3.38)

The q-degree of f ∈ Ln is defined as degq f = d if f =
∑d

i=0 cix
qi and cd 6= 0. We

also take degq 0 = −∞. Since Ln ⊂ Rn[x], for any f, g ∈ Ln, we will continue to
use gcd{f, g} and f | g notations by treating as f, g ∈ Rn[x].
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We note the following properties of Ln (see [36, Chapter 3] as a reference textbook,
where these properties are proven for L0, i.e., when the coefficients of the linearized
polynomials are from Fqs . The same proofs can be extended to Ln. We also give
the proofs of P1 and P3 in Appendix 3.A as the other properties are obvious):

P1. Ln is a ring with no zero divisors under the addition and the composition
operation ◦.

P2. For any f, g ∈ Ln, degq(f ◦ g) = degq(f) + degq(g).

P3. For any finite-dimensional subspace V ⊂ Rn over Fq and t ≥ 0,

f =
∏
β∈V

(x− β)q
t ∈ Ln (3.39)

and degq f = t+ dimV .

P4. For any f ∈ Ln, if xq
t | f , then ∃f ′ ∈ Ln such that f = f ′ ◦ xqt .

P5. For any f, g ∈ Ln, if xq
t | f , then xqt | f ◦ g and xqt | g ◦ f .

P6. For any f, g ∈ Ln, if xq - f and xqt | g ◦ f , then xqt | g.

We are interested in linearized polynomials of the following form:

f(Z, t) ,
∏

β∈span{xi:i∈Z}

(x− β)q
t ∈ Ln, t ≥ 0,Z ⊂ [n]. (3.40)

Note that these are linearized polynomials in light of P3 above. Furthermore, since
the xi’s are assumed to be indeterminates, any nontrivial linear combination of them
is nonzero, i.e. the xi’s are linearly independent. Hence,

degq f(Z, t) = t+ dim(span{xi : i ∈ Z}) = t+ |Z|. (3.41)

For k ≥ 1, we define the set of linearized polynomials in this form with q-degree at
most k − 1:

Ln,k , {f(Z, t)|t ≥ 0,Z ⊂ [n] s.t. t+ |Z| ≤ k − 1} ⊂ Ln. (3.42)

We also note the following properties with regard to Ln,k, whose proofs appear in
Appendix 3.A.
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P7. For any f1 = f(Z1, t1), f2 = f(Z2, t2) ∈ Ln,k, we have

gcd{f1, f2} = f(Z1 ∩ Z2,min{t1, t2}) ∈ Ln,k.

P8. For any f1, f2 ∈ Ln,k, if f2 | f1, then ∃f ′1 ∈ Ln, f1 = f ′1 ◦ f2.

P9. Let f = f(Z, t) ∈ Ln,k and let f ′ = f |xn=0 ∈ Ln−1 (substitute xn = 0 in each
coefficient of f ). Then, f ′ ∈ Ln−1,k and

f ′ =

f(Z, t) n /∈ Z

f(Z − {n}, t+ 1) n ∈ Z
. (3.43)

As a final note, it will be insightful to describe the composition operation between
linearized polynomials in matrix language. It is known that multiplying two poly-
nomials is equivalent to multiplying two Toeplitz matrices since both perform the
convolution operation. Now, wewill give the analogwhen composing two linearized
polynomials. Let f =

∑d
i=0 cix

qi ∈ Ln. For b − a ≥ d, we define the following
matrix:

Sa×b(f) =


cq

0

0 cq
0

1 · · · cq
0

b−a

cq
1

0 cq
1

1 · · · cq
1

b−a
. . . . . . . . .

cq
a−1

0 cq
a−1

1 · · · cq
a−1

b−a


where ci = 0 for i > d. Note that a and b are parameters that define the dimensions
of the matrix Sa×b(f), which is why we subscript S by a × b. For any linearized
polynomials f1, f2 ∈ Ln, we have that

Sa×b(f1 ◦ f2) = Sa×c(f1) · Sc×b(f2) (3.44)

for any a, b, c such that c − a ≥ degq f1 and b − c ≥ degq f2. The proof follows
straightforward calculations by definition. As a special case, when f1 = xq

t ,
f2 = f =

∑d
i=0 cix

qi , and f1 ◦ f2 = f q
t , we can write for b− a ≥ d,

Sa×(b+t)(f
qt) = Sa×(a+t)(x

qt) · S(a+t)×(b+t)(f) (3.45)

=
(
0a×t Ia×a

)
· S(a+t)×(b+t)(f) (3.46)

=


0 · · · 0 cq

t

0 cq
t

1 · · · cq
t

b−a

0 · · · 0 cq
t+1

0 cq
t+1

1 · · · cq
t+1

b−a
... ... . . . . . . . . .

︸ ︷︷ ︸
t

0 · · · 0 cq
t+a−1

0 cq
t+a−1

1 · · · cq
t+a−1

b−a

 .

(3.47)
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Since by definition, f(Z, t) = f ′q
t

for some f ′ ∈ Ln, we have the following property:

P10. Let f = f(Z, t) and r ≥ 0. Then the first r + t columns of Sa×(b+r)(f
qr) are

all zero.

Main Result
Theorem 3.3.A is a more general statement than Claim 3.1 given in Section 3.2 and
it is the analog of [2, Theorem 3] for linearized polynomials.

Theorem 3.3.A. Let k ≥ m ≥ 1 and n ≥ 0. Then, for any f1, f2, . . . , fm ∈ Ln,k,
the following are equivalent:

(i) For all g1, g2, . . . , gm ∈ Ln and r ≥ 0 such that degq(gi ◦ fi) ≤ k − 1, we
have

m∑
i=1

gi ◦ xq
r ◦ fi = 0 =⇒ g1 = g2 = · · · = gm = 0. (3.48)

(ii) For all nonempty Ω ⊂ [m], we have

k − degq gcd
i∈Ω

fi ≥
∑
i∈Ω

(k − degq fi). (3.49)

�

Before moving to the proof, in order to see how Claim 3.1 becomes a special case
of Theorem 3.3.A, we will give an equivalent way of writing it in terms of matrices
with entries from Rn. This will also allow us to see its connection with [2, Theorem
3].

For i ∈ [m], let fi = f(Zi, ti) ∈ Ln,k (i.e. Zi ⊂ [n], ti ≥ 0 such that |Zi| + ti ≤
k − 1). For r ≥ 0, we will write S(f q

r

i ) instead of S(k−ti−|Zi|)×(k+r)(f
qr

i ) for the
ease of notation. By P10, S(f q

r

i ) will look like as follows, where the ×’s represent
the nonzero entries:

S(f q
r

i ) =


0 · · · 0 × × · · · ×
0 · · · 0 × × · · · ×
... ... . . . . . . . . .

︸ ︷︷ ︸
r+ti

0 · · · 0 ︸ ︷︷ ︸
k−1−ti−|Zi|

︸ ︷︷ ︸
|Zi|+1

× × · · · ×


 k−ti−|Zi|. (3.50)
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Then, applying (3.44) to the expression gi ◦ xq
r ◦ fi = gi ◦ f q

r

i in Theorem 3.3.A
yields

S1×(k+r)(gi ◦ xq
r ◦ fi) = ui · S(f q

r

i ) (3.51)

where ui = S1×(k−ti−|Zi|)(gi) is a row vector. Therefore, we can write

S1×(k+r)

(
m∑
i=1

gi ◦ xq
r ◦ fi

)
=
(
u1 · · · um

)
·


S(f q

r

1 )
...

S(f q
r

m )

 (3.52)

which is a linear combination of the rows of

M(r) =


S(f q

r

1 )
...

S(f q
r

m )


∑m

i=1(k−ti−|Zi|)×(k+r)

. (3.53)

Hence, (i) in Theorem 3.3.A is equivalent to saying the matrix M(r) has full row
rank. Note that the first r columns of M(r) are zero since the first r + ti columns
of S(f q

r

i ) are so.

Furthermore, (ii) in Theorem 3.3.A can be written in terms of the Zi’s and the ti’s
in lights of (3.41) and P7. Therefore, Theorem 3.3.A is equivalent to Theorem 3.3.B
below.

Theorem 3.3.B. For i ∈ [m], let Zi ⊂ [n], ti ≥ 0 such that |Zi|+ ti ≤ k− 1. Then,
the matrix M(r) defined in (3.53) has full row rank for all r ≥ 0 if and only if for
all nonempty Ω ⊂ [m],

k −

∣∣∣∣∣⋂
i∈Ω

Zi

∣∣∣∣∣−min
i∈Ω

ti ≥
∑
i∈Ω

(k − ti − |Zi|). (3.54)

�

As a special case, when m = k, |Zi| = k − 1, ti = 0, and r = 0, each block in
M(r) becomes a row vector with coefficients of fi = f(Zi, ti) =

∑k
i=1 cijx

qj−1:

S(k−ti−|Zi|)×(k+r)(f
q0

i ) = S1×(k+r)(fi) =
(
ci1 ci2 · · · cik

)
.

Hence, we have Corollary 3.1 below, which is Claim 3.1 in Section 3.2.

Corollary 3.1. For i ∈ [k], let Zi ⊂ [n] with |Zi| = k − 1. Then,

k ≥

∣∣∣∣∣⋂
i∈Ω

Zi

∣∣∣∣∣+ |Ω|, ∀ ∅ 6= Ω ⊂ [k]
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if and only if

det


c11 c12 . . . c1k

c21 c22 . . . c2k

...
...

...
ck1 ck2 . . . ckk

 6= 0

where cij’s are defined as the coefficients of fi = f(Zi, 0) =
∑k

i=1 cijx
qj−1 . �

Sketch of the proof of Theorem 3.3.B
The proof given here for Theorem 3.3.B omits certain steps that the interested reader
can fill in. The complete proof of the equivalent Theorem 3.3.A is given in Section
3.3 and includes each and every step.

The following identity (3.55) will be very useful throughout the proof.

For any Ω ⊂ [m] (w.l.o.g. assume Ω = {1, 2, . . . , `}), we have fi = f ′i ◦ f0 for
i ∈ [`], where f0 = gcdi∈Ω fi. Then, we can write (with the appropriate dimensions
for S( · )) 

S(f q
r

1 )
...

S(f q
r

` )

 =


S(f ′1

qr)
...

S(f ′`
qr)


︸ ︷︷ ︸[
0∗×r B′

]
· S(f0)︸ ︷︷ ︸ ×

S(f q
r

0 )


= B′ · S(f q

r

0 ) (3.55)

where thematrixB′ has (k−
∣∣⋂

i∈ΩZi
∣∣−mini∈Ω ti) columns and

∑
i∈Ω(k−ti−|Zi|)

rows. Note that these are respectively the left and right hand sides in (3.54).

Therefore, if (3.54) does not hold, then B′ will be a tall matrix and will not have full
row rank, which solves =⇒ direction. For the other direction, we will try to reduce
the problem to the one that has a smaller k,m, or n in order to do an inductive proof.
We look into two cases:

Case 1. (3.54) is tight for some 2 ≤ |Ω| ≤ m− 1.

Case 2. (3.54) is strict for all 2 ≤ |Ω| ≤ m− 1.

In the first case, the matrix B′ becomes a square matrix. Hence,
S(f q

r

1 )
...

S(f q
r

m )

 =


B′S(f q

r

0 )

S(f q
r

`+1)
...

S(f q
r

m )

 (3.56)
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=


B′

I
. . .

I




S(f q
r

0 )

S(f q
r

`+1)
...

S(f q
r

m )

 . (3.57)

This will reduce the problem into two smaller problems: The first one is showing
that the matrix on the right in (3.57) has full row rank. The second one is showing
that B′ is non-singular or that B′ · S(f q

r

0 ), which is equal to the first ` blocks (see
(3.55)), has full row rank. Both are smaller problems (in terms of the number of
blocks) and one can show that both satisfy the inequalities in (3.54).

In the second case, since the inequalities are strict except for |Ω| = 1,m, we have
some flexibility to play with the sets. For example, we can remove an element j
from all the sets Zi’s containing j and increase ti by 1 (this corresponds to Case
2c in the proof of Theorem 3.3.A). This operation sets xj = 0 in the matrix M(r)

and we can claim that if M(r)|xj=0 has full row rank, then so does M(r). Hence,
it reduces n in the problem to n − 1. Furthermore, it can be shown that except for
two corner cases (see Case 2a and 2b), one can carefully choose such an element j
so that removing it from the sets will not break (3.54) for |Ω| = m.

The only two corner cases are when none or only one of the ti’s is zero. If ti ≥ 1

for all i ∈ [m] (i.e. the first r + 1 columns of M(r) are all zero), then decreasing
k and each ti by 1 and increasing r by 1 will reduce the problem into a smaller one
(see Case 2a). If there is a unique zero, say t1 = 0 (see Case 2b), then the first r+ 1

columns of S(f q
r

i ) will be zero only for i ≥ 2. Then, the matrix will look like

M(r) =



0 · · · 0 × × · · · ×
0 · · · 0 0 × × · · · ×
... ... ... . . . . . . . . .
0 · · · 0 0 × × · · · ×
0 · · · 0 0 × × · · · ×
... ... ... . . . . . .
0 · · · 0 0 × × · · · ×

...


. (3.58)

Hence, the first row is definitely not in the span of the other rows because it contains
a nonzero in the (r + 1)th column while the others do not. So, we can reduce the
problem by removing the first row. This will decrease k and every ti except t1 by 1
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(and maybem too if there is a single row in the first block). Again, it can be shown
that this operation does not violate (3.54).

Proof of Theorem 3.3.A
Let fi = f(Zi, ti). For the ease of notation, we will write fΩ , gcdi∈Ω fi, which, by
P7, is equal to

fΩ = f

(⋂
i∈Ω

Zi, min
i∈Ω

ti

)
. (3.59)

We will first show the trivial direction ((i) =⇒ (ii)), then do induction for the
other direction ((ii) =⇒ (i)).

(i) =⇒ (ii):

Suppose that (ii) does not hold and w.l.o.g., assume that for Ω = {1, 2, . . . , `},

k − degq fΩ <
∑
i∈Ω

(k − degq fi).

For i ∈ Ω, let fi = f ′i ◦ fΩ for some f ′i ∈ Ln (see P8). Then, for r = 0 and for
g1, . . . , g` ∈ Ln such that degq(gi ◦ fi) ≤ k − 1, in (i), the equation

∑
i∈Ω gi ◦ f ′i =

0 defines homogeneous linear equations in coefficients of gi’s. The number of
variables is

∑
i∈Ω k − degq fi and the number of equations is at most k − degq fΩ.

So, one can find g1, . . . , g`, not all zero, that solves this linear system.

(ii) =⇒ (i):

We will do induction on parameters (k,m, n) considered in the lexicographical
order.

For (k,m = 1, n), (i) always holds due to P1: g1 ◦ xq
r ◦ f1 = 0 =⇒ g1 = 0.

For (k,m ≥ 2, n = 0), (ii) never holds: n = 0 =⇒ fi = xq
ti for some ti for every

i. Suppose t1 ≤ t2, then for Ω = {1, 2}, (3.49) becomes k−t1 ≥ (k−t1)+(k−t2),
which contradicts with |Zi|+ ti ≤ k − 1.

For k ≥ m ≥ 2 and n ≥ 1, assume that the statement ((ii) =⇒ (i)) is true for
parameters (k′,m′, n′) < (k,m, n). Take any f1, . . . , fm ∈ Ln,k for which (ii) is
true. We will prove that (i) holds under the following cases:

Case 1. ∃Ω ⊂ [m] with 2 ≤ |Ω| ≤ m− 1 such that (3.49) holds with equality.

Case 2. ∀Ω ⊂ [m] with 2 ≤ |Ω| ≤ m − 1, (3.49) holds strictly and any of these
three:
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Case 2a. For all i ∈ [m], ti ≥ 1.

Case 2b. There exists a unique i ∈ [m] such that ti = 0.

Case 2c. There exist at least two zero ti.

We will reducem in Case 1, k in Case 2a and 2b, and n in Case 2c. Note that since
k ≥ m, reducing k sometimes may also reduce m, which may happen in Case 2b
but will not happen in Case 2a, where we show k ≥ m+ 1.

Case 1: W.l.o.g., assume that for Ω′ = {1, 2, . . . , `},

k − degq f0 =
∑
i∈Ω′

(k − degq fi)

where f0 = fΩ′ . By P8, for i ∈ [`], there exists f ′i ∈ Ln such that fi = f ′i ◦ f0.

We will look at two smaller problems: (f1, . . . , f`) ∈ L`n,k and (f0, f`+1, . . . , fm) ∈
Lm−`+1
n,k . Since ` < m and m − ` + 1 < m, the statement holds for both by the

induction hypothesis.
It is trivial that (ii) holds for (f1, . . . , f`) and for (f0, f`+1, . . . , fm) when 0 /∈ Ω.
We will show that it also holds for (f0, f`+1, . . . , fm) when 0 ∈ Ω:

k − degq fΩ = k − degq gcd{f0, f(Ω−{0})} (3.60)

= k − degq gcd{fΩ′ , f(Ω−{0})} (3.61)

≤
∑

i∈Ω′∪(Ω−{0})

(k − degq fi) (3.62)

=
∑
i∈Ω′

(k − degq fi) +
∑

i∈(Ω−{0})

(k − degq fi) (3.63)

= (k − degq f0) +
∑

i∈(Ω−{0})

(k − degq fi) (3.64)

=
∑
i∈Ω

(k − degq fi). (3.65)

Hence, by the induction hypothesis, (i) holds for both (f1, . . . , f`) and
(f0, f`+1, . . . , fm). Now, we will show that it also holds for (f1, . . . , fm):

Suppose that for some r ≥ 0 and g1, . . . , gm ∈ Ln with degq gi ◦ fi ≤ k − 1 for
i ∈ [m], we have

m∑
i=1

gi ◦ xq
r ◦ fi = 0.
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Since xqr |
∑`

i=1 gi ◦ xq
r ◦ f ′i , by P4, we can write∑̀

i=1

gi ◦ xq
r ◦ f ′i = g0 ◦ xq

r

for some g0 ∈ Ln. Then,

0 =
m∑
i=1

gi ◦ xq
r ◦ fi

=
∑̀
i=1

gi ◦ xq
r ◦ f ′i ◦ f0 +

m∑
i=`+1

gi ◦ xq
r ◦ fi

= g0 ◦ xq
r ◦ f0 +

m∑
i=`+1

gi ◦ xq
r ◦ fi.

Hence, g0 = g`+1 = · · · = gm = 0. Then,

g0 ◦ xq
r ◦ f0 =

∑̀
i=1

gi ◦ xq
r ◦ fi = 0. (3.66)

Hence, g1 = · · · = g` = 0. Then, all gi’s are zero.

Case 2a: For all i ∈ [m], fi = xq ◦ f ′i , where f ′i = f(Zi, ti− 1) ∈ Ln,k−1. Note that
since mini∈[m] ti ≥ 1, we have degq f[m] ≥ 1 and for Ω = [m], (ii) implies

k − 1 ≥ k − degq f[m] ≥
∑
i∈[m]

(k − degq fi) ≥ m.

By the induction hypothesis, the statement is true for (f ′1, . . . , f
′
m) with parameters

(k − 1,m, n).

(ii) holds for (f ′1, . . . , f
′
m) because for any nonempty Ω ⊂ [m],

k − 1− degq f
′
Ω = k − degq fΩ

≥
∑
i∈Ω

(k − degq fi)

=
∑
i∈Ω

(k − 1− degq f
′
i).

Hence, (i) holds for (f ′1, . . . , f
′
m) too and we will show that it also holds for

(f1, . . . , fm):

Suppose that for some r ≥ 0 and g1, . . . , gm ∈ Ln with degq gi ◦ fi ≤ k − 1 for
i ∈ [m], we have

m∑
i=1

gi ◦ xq
r ◦ fi = 0.
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Then,

0 =
m∑
i=1

gi ◦ xq
r ◦ fi

=
m∑
i=1

gi ◦ xq
r ◦ xq ◦ f ′i

=
m∑
i=1

gi ◦ xq
r+1 ◦ f ′i .

Hence, g1 = · · · = gm = 0.

Case 2b: Suppose that tm = 0 and for i ∈ [m − 1], ti ≥ 1. For i ∈ [m − 1], let
fi = xq ◦ f ′i , where f ′i = f(Zi, ti − 1) ∈ Ln,k−1 and let f ′m = fm ∈ Ln,k. Note that
f ′m ∈ Ln,k−1 if and only if degq f

′
m ≤ k− 2, in which case for Ω = [m], (ii) implies

k ≥ k − degq f[m] ≥
∑
i∈[m]

(k − degq fi) ≥ m+ 1.

By the induction hypothesis, the statement is true for (f ′1, . . . , f
′
m) with parameters

(k − 1,m, n) if k ≥ m + 1 (or degq f
′
m ≤ k − 2) and for (f ′1, . . . , f

′
m−1) with

parameters (k − 1,m− 1, n).

We will show that (ii) holds for (f ′1, . . . , f
′
m) when k is replaced by k−1. Ifm /∈ Ω,

it is similar to Case 2a. For m ∈ Ω, first observe that since each root of fm has
a multiplicity of 1, we have gcd{fm, f ′i} = gcd{fm, fi} for i ∈ [m − 1]; hence,
fΩ = f ′Ω. Then,

(k − 1)− degq f
′
Ω = −1 + k − degq fΩ

≥ −1 +
∑
i∈Ω

(k − degq fi)

= (k − 1− degq fm) +
∑

i∈Ω−{m}

(k − degq fi)

= (k − 1− degq f
′
m) +

∑
i∈Ω−{m}

(k − 1− degq f
′
i)

=
∑
i∈Ω

(k − 1− degq f
′
i).

Hence, (i) also holds for f ′i’s.

Suppose that for some r ≥ 0 and g1, . . . , gm ∈ Ln with degq(gi ◦ fi) ≤ k − 1, we
have

m∑
i=1

gi ◦ xq
r ◦ fi = 0.
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Then,

0 =
m∑
i=1

gi ◦ xq
r ◦ fi

= gm ◦ xq
r ◦ fm +

m−1∑
i=1

gi ◦ xq
r ◦ xq ◦ f ′i

= gm ◦ xq
r ◦ fm +

m−1∑
i=1

gi ◦ xq
r+1 ◦ f ′i︸ ︷︷ ︸

divisible by xqr+1 due to P5

.

Hence, gm ◦ xq
r ◦ fm is divisible by xqr+1 and since xq - fm (because tm = 0), by

P6, xqr+1 | gm ◦ xq
r . Then, by P4, we can write gm = g′m ◦ xq for some g′m ∈ Ln

with degq g
′
i = degq gi − 1.

If degq fm = k − 1, then degq g
′
m ≤ −1, which implies that gm = 0. Then,

g1, . . . , gm−1 are also zero since (i) holds for (f ′1, . . . , f
′
m−1) with parameters (k −

1,m− 1, n).

If degq fm ≤ k − 2,

0 = g′m ◦ xq
r+1 ◦ f ′m +

m−1∑
i=1

gi ◦ xq
r+1 ◦ f ′i . (3.67)

Hence, g1 = · · · = gm−1 = g′m = 0 since (i) holds for (f ′1, . . . , f
′
m) with parameters

(k − 1,m, n). Then all gi’s are zero.

Case 2c: W.l.o.g., assume that tm−1 = tm = 0. If Zm−1 = Zm, then for Ω =

{m− 1,m}, (ii) implies

k − degq fm = k − degq gcd{fm−1, fm} ≥ (k − degq fm−1) + (k − degq fm)

which contradicts with degq fm−1 ≤ k− 1. Hence, either Zm−1 6= [n] or Zm 6= [n].
W.l.o.g., assume Zm 6= [n] and n /∈ Zm.

Now, we will substitute xn = 0. Let f ′i = fi |xn=0. By P9, f ′i ∈ Ln−1,k and

f ′i = f(Z ′i, t′i) =

f(Zi, ti) n /∈ Zi
f(Zi − {n}, ti + 1) n ∈ Zi

. (3.68)

By the induction hypothesis, the statement is true for (f ′1, . . . , f
′
m) with parameters

(k,m, n− 1). We will show that it satisfies (ii):
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For |Ω| = 1, it is trivial.

For 2 ≤ |Ω| ≤ m− 1, then

k − degq f
′
Ω = k −

∣∣∣∣∣⋂
i∈Ω

Z ′i

∣∣∣∣∣−min
i∈Ω

t′i (3.69)

≤ k −

(∣∣∣∣∣⋂
i∈Ω

Zi

∣∣∣∣∣− 1

)
−min

i∈Ω
ti (3.70)

= k + 1− degq fΩ (3.71)

≤
∑
i∈Ω

(k − degq fi) (3.72)

=
∑
i∈Ω

(k − degq f
′
i) (3.73)

where the last inequality is because we assume that (3.49) holds strictly for 2 ≤
|Ω| ≤ m− 1 and the first inequality is because t′i ≥ ti and∣∣∣∣∣⋂

i∈Ω

Z ′i

∣∣∣∣∣ =

∣∣∣∣∣⋂
i∈Ω

Zi − {n}

∣∣∣∣∣ ≥
∣∣∣∣∣⋂
i∈Ω

Zi

∣∣∣∣∣− 1.

For |Ω| = m, (3.49) was not strict; however, there is no need to have the +1 in
(3.71) since

n /∈ Zm =⇒ n /∈
⋂
i∈[m]

Zi =⇒

∣∣∣∣∣⋂
i∈Ω

Z ′i

∣∣∣∣∣ =

∣∣∣∣∣⋂
i∈Ω

Zi

∣∣∣∣∣ .
Therefore, (ii) holds for f ′i’s. Hence, so does (i).

Suppose that for some g1, . . . , gm ∈ Ln, not all zero, with degq(gi ◦ fi) ≤ k− 1, we
have

m∑
i=1

gi ◦ xq
r ◦ fi = 0.

We can further assume that at least one coefficient of one gi is not divisible by xn.
(Otherwise, divide them by xn.) Define g′i = gi |xn=0∈ Ln−1. Then, the g′i’s are not
all zero. We can write

m∑
i=1

g′i ◦ xq
r ◦ f ′i =

(
m∑
i=1

gi ◦ xq
r ◦ fi

)∣∣∣∣∣
xn=0

= 0 |xn=0= 0. (3.74)

Then, g′1 = · · · = g′m = 0, which gives a contradiction.
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3.4 Conclusion
In this chapter, we extended our proof technique in [2] for Reed–Solomon codes
to Gabidulin codes by writing an analog of the algebraic-combinatorial problem
presented there. The main challenge in extending the result to Gabidulin codes was
that, unlike polynomialmultiplication, the composition operation between linearized
polynomials is not commutative. As a result, we showed that the work of Halbawi
et al. [14] can be applied to networks with any number of source nodes, which had
been shown only for 3 source nodes.

Theorem 3.1 only claims the existence of Gabidulin codes since its proof is based
on the multivariate polynomial F (α1, . . . , αn) being not identically zero. The same
observation applies to subcodes of Gabidulin codes. In order to explicitly construct
a Gabidulin code, we need to explicitly specify the evaluations points α1, . . . , αn

for which F takes a nonzero value. One possible algorithm could be to generate
random evaluation points until F takes a nonzero value. However, currently, we do
not know the average complexity of this algorithm. Hence, how to construct such
codes efficiently remains an important open problem. As a special case, when the
generator matrix is systematic (i.e. Zi = [k]\{i}), constructions of Gabidulin codes
are given in [38].

3.A Proofs of some properties of linearized polynomials
P1. Ln is a ring with no zero divisors under the addition and the composition

operation ◦.

Proof. Note that for any a, b ∈ Rn[x],

(a+ b)q = aq + bq. (3.75)

Let f =
∑d1

i=0 fix
qi , g =

∑d2

i=0 gix
qi ∈ Ln. Then,

f ◦ g = f

(
d2∑
i=0

gix
qi

)

=

d2∑
i=0

f(gix
qi)

=

d2∑
i=0

d1∑
j=0

fjg
qj

i x
qi+j ∈ Ln.

Furthermore, if f, g 6= 0, then f ◦ g 6= 0 since the leading coefficient, fd1g
qd1

d2

is nonzero. Hence, Ln has no zero divisors.
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By (3.75), for any f, g, h ∈ Ln,

f ◦ (g + h) = f(g(x) + h(x))

= f(g(x)) + f(h(x))

= f ◦ g + f ◦ h.

The other ring properties are trivial.

P3. For any finite-dimensional subspace V ⊂ Rn over Fq and t ≥ 0,

f =
∏
β∈V

(x− β)q
t ∈ Ln (3.76)

and degq f = t+ dimV .

Proof. It is sufficient to prove it for t = 0 because∏
β∈V

(x− β)q
t

= xq
t ◦
∏
β∈V

(x− β).

We do induction on dimV . If dimV = 1, then V = {αa : α ∈ Fq} for some
a ∈ Rn and ∏

β∈V

(x− β) =
∏
α∈Fq

(x− αa)

= xq − aq−1x ∈ Ln.

Suppose V ′ ⊂ V is a subspace such that dimV ′ = dimV − 1 and suppose
f ′ =

∏
β∈V ′(x − β) ∈ Ln. Then, V = {αa + b : α ∈ Fq, b ∈ V ′} for some

a ∈ Rn and ∏
β∈V

(x− β) =
∏

α∈Fq ,b∈V ′
(x− αa− b)

=
∏
α∈Fq

∏
b∈V ′

((x− αa)− b)

=
∏
α∈Fq

f ′(x− αa)

=
∏
α∈Fq

(f ′(x)− αf ′(a))

= [xq − (f ′(a))q−1x] ◦ f ′ ∈ Ln.
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P7. For any f1 = f(Z1, t1), f2 = f(Z2, t2) ∈ Ln,k, we have

gcd{f1, f2} = f(Z1 ∩ Z2,min{t1, t2}) ∈ Ln,k.

Proof. Note that each root of fi has a multiplicity of qti . Therefore, the roots
of gcd of f1 and f2 will be the elements of span{xj : j ∈ Z1}∩span{xj : j ∈
Z2} = span{xj : j ∈ Z1 ∩ Z2}, each with a multiplicity of min{t1, t2}.

P8. If f1, f2 ∈ Ln,k and f2 | f1, then ∃f ′1 ∈ Ln, f1 = f ′1 ◦ f2.

Proof. Let f1 = f(Z1, t1) and f2 = f(Z2, t2). Since each root of fi has a
multiplicity of qti , we have t2 ≤ t1. Furthermore, the roots of f2 are also roots
of f1:

span{xj : j ∈ Z2} ⊂ span{xj : j ∈ Z1}.

Hence, Z2 ⊂ Z1. Then,

f1 =
∏

β∈span{xj :j∈Z1}

(x− β)q
t1

=
∏

a∈span{xj :j∈Z1−Z2}

∏
b∈span{xj :j∈Z2}

(x− a− b)qt1

=
∏

a∈span{xj :j∈Z1−Z2}

(f2(x− a))q
t1−t2

=
∏

a∈span{xj :j∈Z1−Z2}

(f2(x)− f2(a))q
t1−t2

=
∏

β∈span{f2(xj):j∈Z1−Z2}

(f2(x)− β)q
t1−t2

= f ′ ◦ f2

where f ′ =
∏

β∈span{f2(xj):j∈Z1−Z2}

(x− β)q
t1−t2 ∈ Ln.

P9. Let f = f(Z, t) ∈ Ln,k and let f ′ = f |xn=0 ∈ Ln−1 (substitute xn = 0 in each
coefficient of f ). Then, f ′ ∈ Ln−1,k and

f ′ =

f(Z, t) n /∈ Z

f(Z − {n}, t+ 1) n ∈ Z
. (3.77)
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Proof. It is trivial when n /∈ Z . So, suppose n ∈ Z . Then,

f ′ =

 ∏
β∈span{xi:i∈Z}

(x− β)q
t

∣∣∣∣∣∣
xn=0

=

 ∏
β∈span{xi:i∈Z−{n}}

∏
α∈Fq

(x− β − αxn)q
t

∣∣∣∣∣∣
xn=0

=
∏

β∈span{xi:i∈Z−{n}}

∏
α∈Fq

(x− β)q
t

=
∏

β∈span{xi:i∈Z−{n}}

(x− β)q
t+1

= f(Z − {n}, t+ 1) ∈ Ln−1,k.



52

C h a p t e r 4

SUPPORT CONSTRAINED GABIDULIN CODES OVER
CHARACTERISTIC ZERO

4.1 Introduction
Over finite fields, Gabidulin codes [7], [8] can be seen as a rank-metric equivalent of
Reed–Solomon codes, where instead of evaluating ordinary polynomials, one uses
linearized polynomials (i.e., whose only nonzero coefficients are for monomials
whose degree is a nonnegative integer power of the field characteristic). To properly
generalize this definition to fields of characteristic zero, it was recently suggested
in [9] to employ θ–polynomials, which are linear combinations of compositions of
a generator θ of the underlying Galois group of the field extension (that must be
cyclic).

Independently, there has been a surge of interest lately in constructing sparsest
generator matrices for Reed–Solomon and Gabidulin codes [3], [5], [11], [13], [26],
for several applications in distributed computing. Since the rows of a generator
matrix are codewords, each row cannot contain more than k − 1 zeros according to
the Singleton bound, where k is the dimension of the code. The so-called GM–MDS
conjecture, posed by [11] and solved by [3] and [26], asserts that this maximum
number of zeros at every row is attainable, as long as a certain condition regarding
the position of zeros is satisfied. Specifically, this condition requires the zero-
entries at every set of rows to intersect in at most k minus the number of rows in the
intersection.

In this chapter, we complete the picture by showing that the same condition is
necessary and sufficient for the existence of sparse generator matrices for Gabidulin
codes over fields of characteristic zero. We note that while the proof of the equivalent
condition for Reed–Solomon is identical for finite fields and fields of characteristic
zero, for Gabidulin codes this is not the case, and the proof from [5] fails over the
latter fields. However, by adopting notions from the Reed–Solomon equivalent (the
“Simplified GM–MDS conjecture” [3, Thm. 3]), and combining it with a variant
of the well-known Schwartz–Zippel lemma, we are able to resolve the problem
over fields of characteristic zero. Moreover, our proof also provides a randomized
construction algorithm whose probability of success can be arbitrarily high; similar
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randomized construction algorithms exist for the finite variants of the problem, but
their probability of success is lower.

Beyond their application in network coding [21], space-time codes [39], and cryp-
tography [40], Gabidulin codes have applications in low rank matrix recovery [41]
(LRMR), which is normally performed over fields of characteristic zero. In this
problem, one reconstructs a low-rank matrix from a given set of linear measure-
ments. If these linear measurements are given by multiplication of the unknown
matrix by a parity-check matrix of a Gabidulin code, this problem reduces to syn-
drome decoding of the respective zero codeword. Since the parity-check matrix of
a Gabidulin code has a similar structure to that of the generator matrix [9, Prop. 8],
our results imply that when performing LRMR with Gabidulin codes, one may em-
ploy linear measurements that depend on a small number of entries of the unknown
matrix.

The problem is formally stated in Section 4.2, along necessary mathematical back-
ground. Our main results are summarized in Section 4.3, and proved in Section 4.5
by using auxiliary claims given in Section 4.4.

Notations
Let [n] = {1, 2, . . . , n}. Denote the dimension of a subspace V over a field F by
dimF V and the span of the elements in a setS over the field F by spanF S. The (total)
degree of a (multivariate) polynomial f is denoted by deg f (e.g. deg(x2y2 +x3) =

4). For an m × n matrix X and I ⊆ [m], J ⊆ [n], XI,J is the submatrix with
the columns and rows indexed in I and J respectively. Let XI,: = XI,[n] and
X:,J = X[m],J and when I or J has a single element, we sometimes write the
element only, instead of the set.

4.2 Problem Setup
In this section, we will first provide a brief background on cyclic Galois extensions.
Then, we will define rank metric codes and Gabidulin codes. Finally, we will define
our problem, namely, finding Gabidulin codes with support constrained generator
matrices over a field of characteristic zero.

Field extensions
Let E/F be a field extension of finite degree, i.e. the dimension of E as a vector space
over F is finite, and let dimF E = m. The automorphism group of E/F, Aut(E/F),
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is the set of automorphisms of E that fix F, i.e.

Aut(E/F) = {θ : E→ E automorphism | ∀x ∈ F, θ(x) = x},

with the group operation of function composition ◦. If |Aut(E/F)| = m, E/F is
called a Galois extension, in which case, Aut(E/F) is also denoted by Gal(E/F)

and is called the Galois group of E/F.

In this chapter, we will focus on cyclic Galois extensions, whose Galois group is a
cyclic group of orderm:

Gal(E/F) = {θ0, θ1, . . . , θm−1}

where the automorphism θ is the generator and θi+1 = θ ◦ θi for every i ≥ 0. Notice
that θm = θ0 is the identity automorphism.

For example, for finite fields, when F = Fq and E = Fqm , the Galois group is cyclic
of orderm with the generator automorphism θ(x) = xq:

Gal(Fqm/Fq) =
{
x, xq, xq

2

, . . . , xq
m−1
}
.

For infinite fields, when F = Q is the set of rational numbers and E = Q(ζn), where
ζn is then’th root of unity,Q(ζn)/Q is aGalois extension of degreeϕ(n), whereϕ(n)

is the Euler’s phi function (Q(ζn) is called the n’th cyclotomic field and an interested
reader can refer to [42]). Its Galois group is isomorphic to the multiplicative group
Z∗n of integers modulo n. Since Z∗n is cyclic for n = pa, 2pa [43], where p is any
odd prime and a is any positive integer, it follows that for these values of n, we have
thatQ(ζn) is a cyclic Galois extension of degreem = ϕ(n) = pa−1(p−1). It is also
possible to define cyclic extensions of Q for any degreem by considering subfields
of Q(ζp) for an odd prime p such that p− 1 is divisible bym.

Rank metric codes
A linear rank metric code, [n, k, d]E/F, over a field extension E/F is an E–subspace
C of En of dimension k with the rank distance

d = dR(C) , min
06=c∈C

dimF(spanF{c1, . . . , cn}) (4.1)

where c1, . . . , cn ∈ E represent the entries of c ∈ En. By fixing an ordered basis
of E over F, the elements of E can be considered as vectors in Fm, and then the
codewords (i.e. the elements of C ⊂ En) can be viewed as m × n matrices over F.
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Then, this definition of the rank distance in (4.1) is equivalent to the minimum of
the rank of the matrix representation of a nonzero codeword.

Notice that, by definition in (4.1), the rank distance of C can be upper bounded by the
Hamming distance, dH(C) , min06=c∈C ‖c‖0, where ‖c‖0 is the number of nonzero
entries of c. Therefore, the Singleton bound can be written for the rank distance as
well:

dR(C) ≤ dH(C) ≤ n− k + 1. (4.2)

The codes with dR(C) = n− k + 1 are called maximum rank distance (MRD), for
which we write [n, k]E/F by omitting d. A generator matrix for an [n, k, d]E/F code
C is a k × n matrix over E whose rows form a basis for C.

Gabidulin codes
Gabidulin codes are defined as the row space of the k × n matrix

θ0(x1) θ0(x2) · · · θ0(xn)

θ1(x1) θ1(x2) · · · θ1(xn)
... ... ...

θk−1(x1) θk−1(x2) · · · θk−1(xn)

 ∈ Ek×n (4.3)

where θ ∈ Aut(E/F) and x1, . . . , xn ∈ E are F–linearly independent (notice that
this requires n ≤ m = dimF E). Note that Gabidulin codes can be seen as evaluation
codes of the so-called θ–polynomials; a θ–polynomial is a function f : E → E of
the form f(x) =

∑
i fiθ

i(x) for fi ∈ E, and every codeword in a Gabidulin code is
the evaluations of some θ–polynomial of θ–degree at most k− 1. Note also that the
generator matrix can be chosen as the product of any k× k invertible matrix over E
and the matrix in (4.3).

Originally, this was defined by Delsarte [7] and Gabidulin [8] for the finite fields,
when F = Fq, E = Fqm , and θ(x) = xq, as the first general constructions of MRD
codes over finite fields. Later [9], it was extended to fields of characteristic zero,
and it was shown that when E/F is a cyclic Galois extension and θ is the generator
of Gal(E/F), this extension of Gabidulin codes also gives an [n, k]E/F MRD code
[9]. In the rest of the chapter, we will assume that E/F is a cyclic Galois extension
of orderm and F is of characteristic zero.

Problem definition
We consider the problem of finding an [n, k]E/F MRD code whose generator matrix
G ∈ Ek×n has support constraints. We describe the support constraints through the
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subsets Z1,Z2, . . . ,Zk ⊂ [n] as

Gij = 0, ∀j ∈ Zi, i = 1, 2, . . . , k. (4.4)

Over finite fields, this problem was studied in [5] and it was shown that a necessary
and sufficient condition for the existence of MRD codes under support constraints
described by the Zi is∣∣⋂

i∈ΩZi
∣∣+ |Ω| ≤ k, ∀∅ 6= Ω ⊆ [k]. (4.5)

The same condition also appears in the GM–MDS conjecture for MDS codes (i.e.
dH = n− k + 1, see [11], and also [13], [16]) which was proven in [3] and [26].

Over infinite fields, the fact that (4.5) is necessary can be shown similar to [3], since
MRD codes are also MDS (4.2), and since the proof in [3] applies to both finite
and infinite fields. However, a similar proof to [5] cannot be applied to show that
(4.5) is sufficient when F has characteristic zero. The reason is that in finite fields,
since the generator matrix in (4.3) consists of entries in the form of polynomials in
the xi’s, which, in one step of the proof, allows to reduce the problem to a similar
one with a smaller parameter, whereas in the characteristic zero, the entries are in
the form of θ–polynomials (defined in [9]) and applying the same step turns the
problem into one of a different kind. Hence, in this chapter, we will show that (4.5)
is sufficient for the existence of [n, k]E/F MRD codes under the support constraints
on the generator matrix given in (4.4) when F has characteristic zero.

4.3 Main Results
In this section, we present our main results on the existence of MRD codes in
characteristic zero (see Theorem 4.1) and the best achievable rank distance for the
cases where there does not exist any (see Corollary 4.1). Also, we will give a
randomized algorithm for the code construction. The proofs of the theorems will be
given in Section 4.5.

Theorem 4.1. Let E/F be a cyclic Galois extension of degree m such that F has
characteristic zero. For some k ≤ n ≤ m, let Z1, . . . ,Zk ⊂ [n] satisfy (4.5).
Then, there exists an [n, k]E/F Gabidulin code with a generator matrix satisfying the
constraints in (4.4).

If the Zi’s do not satisfy (4.5), then as given in [5] and [3], dR ≤ dH ≤ n + 1 −
max

∅6=Ω⊆[k]

(∣∣⋂
i∈ΩZi

∣∣+ |Ω|
)
< n−k+1, and hence, anMRD code does not exist. For
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this case, Corollary 4.1 below (which is the analog of [5, Thm. 2]) shows that this
upper bound is achievable by the subcodes (i.e the subspaces) of Gabidulin codes.

Corollary 4.1. In Theorem 4.1, if the Zi’s do not satisfy (4.5), then there exists an
[n, k, n − ` + 1]E/F subcode of an [n, `]E/F Gabidulin code, which satisfies (4.4),
where

` = max
∅6=Ω⊆[k]

(∣∣⋂
i∈ΩZi

∣∣+ |Ω|
)
. (4.6)

Proof. Define Zk+1 = · · · = Z` = ∅. Then, for any nonempty Ω ⊆ [`], we have
that

∣∣⋂
i∈ΩZi

∣∣+ |Ω| ≤ `. Hence, by Theorem 4.1, there exists an [n, `, n− `+ 1]E/F

Gabidulin codewith an `×n generatormatrixG having zeros dictated byZ1, . . . ,Z`.
The first k rows of G will generate a subcode whose rank distance dR is as good as
the Gabidulin code: dR ≥ n− `+ 1. Furthermore, n− `+ 1 is an upper bound on
dH [3]. Therefore, n− `+ 1 ≤ dR ≤ dH ≤ n− `+ 1. Hence, dR = n− `+ 1.

Code Construction
Fix an F–basis {b1, . . . , bm} for E and assume that the conditions for the Zi in
Theorem 4.1 are satisfied, i.e. Z1, . . . ,Zk ⊂ [n] satisfy (4.5). Then, each Zi has
at most k − 1 elements by applying (4.5) with |Ω| = 1. In [11, Thm. 2] and [5,
Corollary 3], it is shown that one can keep adding elements to these sets from
[n] without violating any of the inequalities in (4.5) until each Zi has exactly k − 1

elements. Note that adding elements to these sets will only put more zero constraints
on the generator matrix. Therefore, without loss of generality, we can assume that
|Zi| = k − 1 for all i along with (4.5). Then, we construct a generator matrix for a
rank metric code in a randomized manner as described below:
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Inputs: A finite nonempty set S ⊂ F and subsetsZ1, . . . ,Zk ⊂ [n] satisfying
(4.5).

Steps:

• Add elements to the Zi’s from [n] (if necessary) by following the algo-
rithm given in [11, Thm. 2] so that they all have exactly k− 1 elements
and still satisfy (4.5).

• Choose (γij)i∈[n],j∈[m] uniformly at random from S.

• Let xi =
∑m

j=1 γijbj for i ∈ [n].

• Construct A ∈ Ek×n as in (4.3) in terms of x1, . . . , xn.

• Define T ∈ Ek×k as

Tij = det
[
ej A:,Zi

]
, i, j ∈ [k] (4.7)

where ej is the column vector with 1 at the jth entry and 0’s elsewhere
(Note that |Zi| = k − 1).

Output: The generator matrix G = T ·A ∈ Ek×n.

By Lemma 4.1 below, G in the above construction is guaranteed to satisfy (4.4) for
any inputs.

Lemma 4.1. LetZ1, . . . ,Zk ⊂ [n] be subsets of size k−1. For a given k×nmatrix
A, a k × k matrix T (over the same field as A) satisfying (T ·A)ij = 0 for every
j ∈ Zi and i ∈ [k] can be given as in (4.7).

Proof. For a fixed i ∈ [k], the statement (T ·A)ij = 0 for every j ∈ Zi is equivalent
to the equation Ti,: ·A:,Zi

= 0. A solution Ti,: to this equation can be described
in terms of the adjugate of the k × k square matrix P =

[
0k×1 A:,Zi

]
. Recall

that adj P is the transpose of the cofactor matrix
[
(−1)i+j det(P[k]\{i},[k]\{j})

]
i,j∈[k]

and satisfies adj(P)P = det(P)Ik×k. Since P has an all zero column, we have
det P = 0, which implies adj(P)P = 0. Furthermore, due to the zero column in
P, the entries of adj P are zero except the first row, whose entries are for j ∈ [k],

(adj P)1,j = (−1)j+1 det(P[k]\{j},[k]\{1})
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= (−1)j+1 det(A[k]\{j},Zi
)

= det
[
ej A:,Zi

]
= Ti,j.

Since (adj P)1,: ·P = 0 and (adj P)1,: ·A:,Zi
= 0, the row vector Ti,: = (adj P)1,:

satisfies Ti,: ·A:,Zi
= 0.

Furthermore, if x1, . . . , xn are F–linearly independent and the matrix T is invertible
(i.e. det T 6= 0), then the code generated by G is an [n, k]E/F Gabidulin code since
the row spaces of A and G = T ·A are identical. In Theorem 4.2, we give a lower
bound on the probability of this construction giving an MRD code.

Theorem 4.2. If the conditions in Theorem 4.1 are satisfied, then the generator
matrix G randomly constructed as described above will satisfy (4.4) and generate
an [n, k]E/F Gabidulin code with probability at least 1− n+k(k−1)

|S| .

Since F is infinite, S can be arbitrarily large. Therefore, the probability of construct-
ing an MRD code can be arbitrarily close to 1.

Furthermore, if the Zi do not satisfy (4.5), then by following the proof of Corollary
4.1, we can construct a rank metric code achieving the largest possible rank distance
for the given support constraints.

4.4 More on Cyclic Galois Extensions
Before moving to the proofs of the theorems, in this section, we will give some
useful properties of the automorphisms in Gal(E/F) = {θ0, θ1, . . . , θm−1}.

Linear independence of the elements in E

Lemma 4.2 lists some equivalent conditions to the F–linear dependence of the
elements of E in terms of the automorphisms in Gal(E/F). The first two of these
conditions can be also seen as a special case of [9, Prop. 5], where the authors give
equivalent rank metrics for the elements of En, whereas Lemma 4.2 only claims
that these rank metrics simultaneously declare rank deficiency (i.e. return a rank
less than n) for a given element of En. It is worth noting, as shown by Augot et al.
[9], that the assumption that the extension E/F is cyclic plays an important role in
Lemma 4.2. This is since its proof relies on the fact that θ fixes only the elements
of F (i.e. for any x ∈ E, θ(x) = x if and only if x ∈ F), which is the case for the
cyclic extensions.
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Lemma 4.2. Let n ≤ m = dimF E, x1, . . . , xn ∈ E, and

M =


θ0(x1) θ0(x2) · · · θ0(xn)

θ1(x1) θ1(x2) · · · θ1(xn)
...

...
...

θm−1(x1) θm−1(x2) · · · θm−1(xn)

 ∈ Em×n. (4.8)

Then, the following are equivalent:

(i) x1, . . . , xn are F–linearly dependent.

(ii) The columns of M are E–linearly dependent.

(iii) The top n× n minor of M is zero, i.e. det M[n],[n] = 0.

Proof. If xi = 0 for some i, then the claim is trivial, and hence assume that xi 6= 0

for every i.

(ii) =⇒ (i): Let ` be the minimum number of columns of M that are E–linearly
dependent and w.l.o.g. assume that

M:,` =
`−1∑
i=1

βiM:,i

for some unique β1, . . . , β`−1 ∈ E, which implies that θj−1(x`) =
∑`−1

i=1 βiθ
j−1(xi)

for every j ∈ [m]. Then, applying θ to both sides gives θj(x`) =
∑`

i=1 θ(βi)θ
j(xi),

which implies that M:,` =
∑`−1

i=1 θ(βi)M:,i as θm = θ0. Since the βi’s are unique,
it follows that θ(βi) = βi, which implies that βi ∈ F. Since θ0(x) = x, we have
x` =

∑`
i=1 βixi for βi ∈ F.

(iii) =⇒ (ii): If the top n × n minor of M is zero, then there exists ` ≤ n such
that the `’th row of M is in the E–span of the first `− 1 rows. By induction, it can
be shown that for any i ≥ `, the i’th row is in the span of the first ` − 1 rows. To
see how, assume for some β1, . . . , β`−1 ∈ E, θi−1(xj) =

∑`−1
t=1 βtθ

t−1(xj) for all
j. Then, by applying θ to both sides, it follows that the (i + 1)’th row is a linear
combination of the first ` rows; hence it is also in the span of the first ` − 1 rows.
As a result, rank M ≤ `− 1 < n, which implies (ii).

(i) =⇒ (iii): Assume that
∑n

i=1 βixi = 0 for some βi ∈ F. Then, for any j,
applying θj to both sides yields

∑n
i=1 βiθ

j(xi) = 0 since θj(βi) = βi, which implies
(iii).
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Schwartz–Zippel Lemma for automorphisms
Recall the Schwartz–Zippel Lemma, which states that for a nonzero multivariate
polynomial f inn variables over a field, a point uniformly chosen at random fromSn,
where S is a nonempty finite subset of this field, will be a root of f with probability
at most deg f

|S| . In this section, we will give an extension of the Schwartz–Zippel
Lemma for a special type of functions from En to E. More precisely, for a given
multivariate polynomial f over E in mn variables (seen as an m × n matrix), we
will consider the function g(x1, . . . , xn) = f([θi−1(xj)]i∈[m],j∈[n]) and give a bound
on the probability of a randomly chosen point being a zero of g. Later, this will help
us to derive the bound on the probability given in Theorem 4.2.

Lemma 4.3. Let {b1, . . . , bm} be an F–basis for E. Let f be a nonzero multivariate
polynomial over E in mn variables. Let M ∈ Em×n be defined as in (4.8) for
xj =

∑m
i=1 Γijbi, where the Γij are independently uniformly chosen at random from

a finite nonempty subset S ⊂ F. Then,

P(f(M) = 0) ≤ deg f

|S|
.

Proof. Define another polynomial f ′ as f ′(X) = f(BX) in the variables Xij ,
i ∈ [m], j ∈ [n], where B = [θi−1(bj)]i,j∈[m] is an m×m matrix defined as
in (4.8) for b1, . . . , bm. Since {b1, . . . , bm} is an F–basis, the bi are F–linearly
independent and by Lemma 4.2, B is invertible. Then, f can be also written as
f(X) = f ′(B−1X). Hence, f ′ is also nonzero and deg f = deg f ′. Furthermore,
f ′(Γ) = f(BΓ) = f(M) since

Mij = θi−1(xj)

= θi−1 (
∑m

t=1 btΓtj)

=
∑m

t=1 θ
i−1(bt)Γtj

= (BΓ)ij

where we use θi−1(Γtj) = Γtj since Γtj ∈ F. Now, applying the Schwartz–Zippel
Lemma to the polynomial f ′ gives P(f ′(Γ) = 0) ≤ deg f ′

|S| . Hence, P(f(M) = 0) ≤
deg f
|S| .

4.5 Proofs of Theorem 4.1 and Theorem 4.2
First of all, notice that it is sufficient to prove Theorem 4.2 since it implies The-
orem 4.1 when S is chosen sufficiently large. Assume x1, . . . , xn are chosen as
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described in Theorem 4.2. We know that the code with the generator matrix T ·A,
which satisfies (4.4) by Lemma 4.1, is an [n, k]E/F Gabidulin code if the xi’s are
F–linearly independent and T is invertible. Define M ∈ Em×n as in Lemma 4.2,
by which the xi’s are F–linearly independent iff det M[n],: 6= 0. Furthermore, since
A = M[k],:, we have that

T =
[
det
[
ej A:,Zi

]]
i,j∈[k]

=
[
det
[
ej M[k],Zi

]]
i,j∈[k]

.

Therefore, it is sufficient to show that P(det T · det M[n],: 6= 0) ≥ 1 − n+k(k−1)
|S| or

that P(det T · det M[n],: = 0) ≤ n+k(k−1)
|S| .

In order to show this, we will appeal to Lemma 4.3. Define the multivariate
polynomial

f(X) = det

([
det
[
ej X[k],Zi

]]
i,j∈[k]

)
· det X[n],: (4.9)

for the variables Xij , i ∈ [m], j ∈ [n] seen as anm× n matrix X. Then, it suffices
to show that P(f(M) = 0) ≤ n+k(k−1)

|S| . Hence, by Lemma 4.3, all we need to show
is that f is a nonzero polynomial with total degree at most n+ k(k − 1).

To show the bound on the degree of f , recall the Leibniz formula for the determinant
of an n × n square matrix Z, which is det Z =

∑
π∈Sn

sgn(π)
∏n

i=1 Zπ(i),i, where
Sn is the permutation group of size n and sgn(π) is the sign of the permutation π.
Thus, when the entries of Z are polynomials, we can write

deg det Z ≤
∑
j∈[n]

max
i∈[n]

deg Zi,j. (4.10)

Hence, deg det X[n],: ≤ n since each entry of X has degree one. Furthermore,

deg det
[
ej X[k],Zi

]
≤ k−1; hence, deg det

([
det
[
ej X[k],Zi

]]
i,j∈[k]

)
≤ k(k−

1). As a result, deg f ≤ n+ k(k − 1).

To show that f is a nonzero polynomial, we will use the simplified GM–MDS
conjecture of Dau et al. [11], which was proved in [3] and [26].

Lemma 4.4 (Simplified GM–MDS conjecture [3, Thm. 3]1). Let Z1, . . . ,Zk ⊂ [n]

be subsets of size k− 1. Then, they satisfy (4.5) if and only if the determinant of the
1Compared to [3, Thm. 3], in the statement of Lemma 4.4, the variable αj is replaced with −αj

and the matrixP is flipped about its vertical axis, which may only change the sign of the determinant.
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k × k matrix

P =


∏

t∈Z1
(−αt) · · ·

∑
t∈Z1

(−αt) 1∏
t∈Z2

(−αt) · · ·
∑

t∈Z2
(−αt) 1

...
...

...∏
t∈Zk

(−αt) · · ·
∑

t∈Zk
(−αt) 1

 (4.11)

with entries Pij =
∑
S⊆Zi,|S|=k−j

∏
t∈S(−αt) is not the zero polynomial in the

variables α1, . . . , αn.

Notice that the i’th row of P in (4.11) consists of the coefficients of the polynomial

∏
j∈Zi

(X − αj) =
k∑
j=1

PijX
j−1 (4.12)

in the variable X . We will also show that P can be written in the form of (4.7). To
see how, define the m × n Vandermonde matrix V =

[
αi−1
j

]
i∈[m],j∈[n]

. Fix i ∈ [k]

and consider the determinant of the k× k Vandermonde matrix W =
[
v V[k],Zi

]
,

where v is a column vector whose j’th entry is Xj−1 for j ∈ [k]:

det W = ci
∏
j∈Zi

(X − αj)
(4.12)
= ci

∑
j∈[k]

PijX
j−1

where ci =
∏

j1<j2∈Zi
(αj1 − αj2) 6= 0. On the other hand, by the linearity of the

determinant in the first column, we can write

det W =
∑
j∈[k]

det
[
ej V[k],Zi

]
Xj−1,

since v =
∑

j∈[k] ejX
j−1. As a result, the entries of P satisfy

ciPij = det
[
ej V[k],Zi

]
. (4.13)

Now, let us evaluate f in (4.9) at V, which will give a multivariate polynomial in
the variables αj:

f(V) = det

([
det
[
ej V[k],Zi

]]
i,j∈[k]

)
· det V[n],:

(4.13)
= det

(
[ciPij]i,j∈[k]

)
· det V[n],:

= det P ·

∏
i∈[k]

ci

 · det V[n],:.
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By Lemma 4.4, det P is a nonzero polynomial. Furthermore, we have that ci 6= 0

and det V[n],: =
∏

j1<j2∈[n](αj1−αj2) 6= 0. Hence, f(V) is not the zero polynomial
in the variables αj . Therefore, f(X) itself cannot be the zero polynomial in the
variables Xij .
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C h a p t e r 5

CONCLUDING REMARKS AND FUTURE DIRECTIONS

5.1 Central Problem: Generator Matrix under Support Constraints
The central problem in this thesis was to design linear codes with generator matrices
under support constraints. For the Hammingmetric, if theMDS condition holds, the
existence of the Reed–Solomon codes over fields of size at least n+ k− 1 is shown.
For the rank metric, if the MDS condition holds, the existence of the Gabidulin
codes over the finite field extensions Fqs/Fq with s ≥ max{n, k − 1 + logq k} and
the field extensions of characteristic zero is shown. These results suggest some
research directions to explore. We briefly describe two future directions for this
problem.

Explicit Constructions
In order to design a Reed–Solomon code with support constraints satisfying the
MDS condition, one needs to find distinct evaluation points α1, . . . , αn such that
the matrixM in (2.8) is nonsingular. Similarly, to design a Gabidulin code with the
same support constraints, one needs to find evaluation points α1, . . . , αn such that
the multivariate polynomial F in (3.19) evaluates to a nonzero value. However, our
results only guarantee the existence of these evaluation points. Hence, to design the
code, explicit constructions of them still remain to be studied.

In the absence of an explicit construction, one can of course choose αi ∈ F at
random and evaluate det M or F until a nonzero value is obtained. Currently, we
do not know whether this will efficiently find a suitable set of αi’s or whether it will
require something akin to an exhaustive search.

Explicit constructions have been obtained in the literature for special instances of
the problem: Notably in [23]–[25] when the support constraints are sparsest and
balanced (i.e. the numbers of zeros in each row (and column) are as large as possible
and differ at most by 1), and in [31] when the sets are further required to satisfy∣∣∣⋂i

j=1Zj
∣∣∣ ≤ k − i for every i ∈ [k].
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Further Reducing the Field Size
Another interesting question is whether it is possible to further reduce the field size
for the existence of MDS codes with support constrained generator matrices. Note
that if the MDS conjecture is true, without sacrificing the minimum distance, the
best one can hope is to reduce the field size from n+k−1 to n−1. However, if much
smaller field sizes are required, one can consider other code families with sacrificing
theminimum distance. For instance, it might be worth looking at whether algebraic–
geometric codes can be designed with support constrained generator matrices with
a desired minimum distance and field size.

5.2 Dual Problem: Parity Check Matrix under Support Constraints
A related problem to the main problem of this thesis is the dual problem, where
the support constraints are on the parity check matrix. In other words, we would
like to find a code with the largest possible minimum distance, subject to support
constraints on the parity check matrix.

Similarly, if we represent these constraints through subsets Z1, . . . ,Zn−k ⊂ [n], the
entry Hij is required to be zero for every j ∈ Zi:

H(n−k)×n =


× 0 × · · · 0

0 0 × · · · ×
... ... ... ...
× × 0 · · · 0


→ Z1

→ Z2

...
→ Zn−k

. (5.1)

The distance of the code with the parity check matrix H can be written in terms of
the Kruskal rank of H:

dH(C) = kr(H) + 1 (5.2)

where kr(H), the Kruskal rank of H, is the largest integer r such that any r columns
of H are linearly independent. This is because c ∈ C ⇐⇒ HcT = 0, which
implies that the columns of H corresponding to the nonzero entries of a codeword
c are linearly dependent.

Let us drive an upper bound on the distance in terms of the given zero pattern.
Notice that permuting the rows or columns of H does not affect its Kruskal rank.
Hence, for a fixed nonempty Ω ⊂ [n − k], permute the rows such that the rows
indexed in Ω are on the top, and then permute the columns such that all the common
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zeros of the rows indexed in Ω are shifted to the right (denote ZΩ =
⋂
i∈ΩZi):

H′ =

[
×
×︸︷︷︸

n−|ZΩ|

0

×︸︷︷︸
|ZΩ|

]
} |Ω|
} n−k−|Ω|

. (5.3)

If |ZΩ| > n − k − |Ω|, then the last n − k − |Ω| + 1 columns would be linearly
dependent because they only have nonzero entries in their last n − k − |Ω| rows;
hence the Kruskal rank could be at most n− k − |Ω|:

|ZΩ| > n− k − |Ω| =⇒ kr(H) ≤ n− k − |Ω|. (5.4)

As a result, we can upper bound the distance of the code as follows:

dH(C) ≤ min
Ω⊂[n−k]

n− k − |Ω|+ 1 (5.5)

s.t. |ZΩ| > n− k − |Ω|

= n− k + 1− max
Ω⊂[n−k]

|Ω| (5.6)

s.t. |ZΩ| > n− k − |Ω|.

Locally Repairable Codes
A special case of this problem has been studied in the context of locally repairable
codes [18]–[20]. For example, when the repair sets are all of equal size r (i.e.
locality of r), this imposes a very particular structure on the parity check matrix. If
Zi is the set of positions of the zeros in the ith row of H, then for all j ∈ [n], there
exists i ∈ [n− k] such that j ∈ Zc

i and |Zc
i | ≤ r+ 1. Now, let us simplify the upper

bound in (5.6) for these subsets. Let

Ω0 = {i ∈ [n− k] : |Zc
i | ≤ r + 1}. (5.7)

Then,
⋃
i∈Ω0
Zc
i = [n] and

n =

∣∣∣∣∣ ⋃
i∈Ω0

Zc
i

∣∣∣∣∣ ≤∑
i∈Ω0

|Zc
i | ≤ |Ω0|(r + 1). (5.8)

Hence, |Ω0| ≥ d n
r+1
e. Note that locally repairable codes do not impose any con-

straints on the rows indexed in Ωc
0. For any Ω ⊂ Ω0 such that |Ω| < k

r
, we have

that ∣∣∣∣∣⋃
i∈Ω

Zc
i

∣∣∣∣∣ ≤∑
i∈Ω

|Zc
i | ≤ |Ω|(r + 1) < |Ω|+ k (5.9)
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which is equivalent to the constraint in (5.6) byDeMorgan’s law. Ifn is large enough,
we can choose Ω ⊂ Ω0 such that |Ω| = dk

r
e − 1 ≤ d n

r+1
e ≤ |Ω0|. Hence, by (5.6),

we get the well-known bound on the minimum distance of a locally repairable code
with locality r:

dH(C) ≤ n− k + 2−
⌈
k

r

⌉
. (5.10)

It has been shown that this is achievable by a subcode of a Reed–Solomon code [18].

General Case
In the case of general support constraints, this upper bound (5.6) is achievable by
a random code, which requires large field sizes and potentially does not have an
efficient decoder. Therefore, a question one may ask is whether one can design an
algebraic code on a small field size with a minimum distance that achieves the upper
bound. If the code is MDS, the problem is clearly equivalent to the one we have
studied here. However, if the support constraints on the parity checkmatrix preclude
the existence of a MDS code, then the question of whether such an algebraic code
under a general support constraint exists remains open.
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A p p e n d i x A

RELEVANT MATERIALS AND INSPIRING PROBLEMS

In this chapter, we will go over some relevant materials for our problems and some
related problems inspiring us in our solutions, from a puremathematical perspective.
Firstly, we will define the MDS matrices, which are in fact the generator matrices
of MDS codes. We will derive a necessary condition (MDS condition) for a matrix
to be an MDS matrix in terms of the positions of its zero entries. Secondly, we
will go over a famous combinatorial problem, the Hall’s Marriage Theorem, which
involves a very similar condition to the MDS condition, and we will give some
generalizations of it. The generalization of the Hall’s Theorem will be later useful
in simplifying the GM–MDS conjecture. Thirdly, we will give the proofs of the
Hall’s Theorem and its generalization. The ideas behind these proofs are, in fact,
very similar to those used in the main problems of this thesis. Therefore, they may
help the reader to have a taste of the main idea behind the proof of the GM–MDS
conjecture.

A.1 MDS Matrix
Definition A.1 (MDS Matrix). An MDS Matrix is a k × n matrix (k ≤ n) over a
field F such that every k columns of it are linearly independent.

A Vandermonde matrix with distinct parameters x1, x2, . . . , xn ∈ F is an example
of an MDS matrix: 

1 1 · · · 1

x1 x2 · · · xn

x2
1 x2

2 · · · x2
n

... ... ...
xk−1

1 xk−1
2 · · · xk−1

n


. (A.1)

This is because any k × k minor of it is a Vandermonde determinant, which is
nonzero when the parameters xi are distinct. More precisely, the k × k minor that
is defined by the columns indexed in t1, t2, . . . , tk is∏

1≤i<j≤k

(xtj − xti) 6= 0. (A.2)
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The MDS property of a matrix is preserved after multiplying with an invertible
matrix from left:

Theorem A.1. Let G be k × n and T be k × k invertible. Then, G is an MDS
matrix if and only if TG is an MDS matrix.

MDS condition for a zero pattern
MDS matrices cannot admit every zero pattern. For example, a matrix having a
column with all zero entries cannot be anMDSmatrix since a k×k minor involving
this column is zero. We will represent a zero pattern by subsets Z1, . . . ,Zk ⊂ [n].
For i ∈ [k], Zi denotes the set of positions of some zeros in the ith row of G:

Gk×n =


× 0 × · · · 0

0 0 × · · · ×
... ... ... ...
× × 0 · · · 0


→ Z1

→ Z2

...
→ Zk

. (A.3)

We say that G admits this zero pattern if

Gij = 0 ∀j ∈ Zi. (A.4)

Note that G may have other zeros as well in its entries shown with ×.

Let us derive a necessary condition for a matrix Gk×n to be an MDS matrix in
terms of its zero entries. Notice that permuting the rows or columns of G will not
change the MDS property. Hence, for a fixed nonempty Ω ⊂ [k], permute the rows
such that the rows indexed in Ω are on the top, and then permute the columns such
that all the common zeros of the rows indexed in Ω are moved to the right (denote
ZΩ =

⋂
i∈ΩZi):

G′ =

[
×
×︸︷︷︸

n−|ZΩ|

0

×︸︷︷︸
|ZΩ|

]
} |Ω|
} k−|Ω|

. (A.5)

If |ZΩ| > k − |Ω|, then the last k − |Ω| + 1 columns would be linearly dependent
because they only have nonzero entries in their last k − |Ω| rows. Therefore, for G′

to be an MDS matrix, ZΩ can have at most k − |Ω| elements. Hence, a necessary
condition for G to be an MDS matrix is given as:

Definition A.2 (MDS Condition). For any nonempty Ω ⊂ [k],∣∣∣∣∣⋂
i∈Ω

Zi

∣∣∣∣∣+ |Ω| ≤ k. (A.6)
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For large enough fields, the MDS condition on a zero pattern is also a sufficient
condition to find an MDS matrix admitting this zero pattern. For example, when
|F| ≥

(
n−1
k−1

)
, it is shown that for any zero pattern satisfying theMDS condition, there

exists an MDS matrix admitting this zero pattern [12]. The GM–MDS conjecture
claims the same for smaller field sizes, in fact as low as n+ k − 1.

A.2 Hall’s Marriage Theorem
Let G = (U, V,E) represent the bipartite graph with the disjoint sets of vertices U
and V and the edges E ⊂ U × V such that |U | ≤ |V |. Let NG(Ω) ⊂ V denote the
neighborhood of Ω ⊂ U , i.e. the set of all vertices in V adjacent to some element
of Ω.

1 1

2 2

3 3

4 4

5 5

U V

Ω

NG(Ω)

Figure A.1: A bipartite graph with a perfect matching (bold), a subset Ω of the left
nodes, and its neighborhood NG(Ω).

We are interested in finding a perfect matching in G, which means a one-to-one
mapping from U to V using the edges in E. A straightforward necessary condition
for the existence of a perfect matching in G can be given as the neighborhood of any
Ω ⊂ U should have at least as many elements as Ω:

Definition A.3 (Marriage Condition). For any Ω ⊂ U ,

|NG(Ω)| ≥ |Ω|. (A.7)

Hall’s Marriage Theorem states that the Marriage Condition is also a sufficient
condition for the existence of a perfect matching.

Theorem A.2.A (Hall’s Theorem). Let G = (U, V,E) be a bipartite graph. There
is a perfect matching in G if and only if |NG(Ω)| ≥ |Ω| for all Ω ⊂ U .
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Relation to the MDS condition
The marriage condition is in fact very similar to the MDS condition given in
Definition A.2. To see how, let us define Si = NG({i}) as the neighbors of i ∈ U .
Then, NG(Ω) =

⋃
i∈Ω Si and equation (A.7) can be written as:∣∣∣∣∣⋃

i∈Ω

Si

∣∣∣∣∣ ≥ |Ω|. (A.8)

This form is not quite the same as the MDS condition; however, if we rewrite it in
terms of the complements Zi , V \Si by assuming U = [k] and V = [n], we get:∣∣∣∣∣⋂

i∈Ω

Zi

∣∣∣∣∣+ |Ω| ≤ n, (A.9)

which is the same as the MDS condition when n = k.


0 × × 0 0
× 0 0 × 0
× × 0 0 ×
0 0 × 0 ×
0 0 × × 0

 −→


0 1 0 0 0
0 0 0 1 0
1 0 0 0 0
0 0 0 0 1
0 0 1 0 0


Figure A.2: The zero pattern and the permutation matrix corresponding to the
bipartite graph and the perfect matching illustrated in Figure A.1.

In fact, when n = k, Hall’s Marriage Theorem says that any zero pattern satisfying
the MDS condition for a k × k square matrix can be achieved by a permutation
matrix1, which is an invertible matrix and therefore, an MDS matrix. To see
how, first notice that finding a perfect matching can be viewed as removing edges
from the graph until each node in U has only one neighbor while the Marriage
Condition is still satisfied (note that when each node has a single neighbor, the
Marriage Condition only says that these neighbors are distinct, i.e. it is a perfect
matching). Furthermore, note thatZi is the set of nodes to which i is not connected.
Hence, removing edges corresponds to adding elements from [n] to the subsets Zi.
Therefore, in terms of the subsets Z1, . . . ,Zk ⊂ [n], Hall’s Marriage Theorem can
be rewritten as

1By using this idea, it can be shown that the Birkhoff–Von Neumann theorem is a logical
equivalence of the Hall’s theorem.
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Theorem A.2.B (Hall’s Theorem). Let Z1,Z2, . . . ,Zk ⊂ [n] such that for all
nonempty Ω ⊂ [k], ∣∣∣∣∣⋂

i∈Ω

Zi

∣∣∣∣∣+ |Ω| ≤ n. (A.10)

Then, one can keep adding elements from [n] to these subsets without violating any
of the inequalities until each subset has exactly n− 1 elements.

Hence, when n = k, for a given zero pattern satisfying the MDS condition, we
can add more zeros if necessary and obtain a zero pattern that has k − 1 zeros in
each row. Then, if we put 1 to the remaining nonzero entries, we will obtain a
permutation matrix.

Generalization of Hall’s Marriage Theorem
Heretofore Hall’s Marriage Theorem relates to the MDS matrices only when n = k.
In order to have a relation in a more general case, let us consider a generalization of
the statement [11, Thm. 2]:

Theorem A.3.A (Generalized Hall’s Theorem). Let Z1,Z2, . . . ,Zk ⊂ [n] such that
for all nonempty Ω ⊂ [k], ∣∣∣∣∣⋂

i∈Ω

Zi

∣∣∣∣∣+ |Ω| ≤ k. (A.11)

Then, one can keep adding elements from [n] to these subsets without violating any
of the inequalities until each subset has exactly k − 1 elements.

Note that this only generalizes the special case (when n = k) of the Hall’s Theorem.
In other words, setting n = k in both Theorem A.2.B and Theorem A.3.A gives the
same statement.

In relation to the zero patterns of the MDS matrices, Theorem A.3.A says that to a
given zero pattern satisfying the MDS condition, we can add more zeros and obtain
an extended zero pattern which also satisfies the MDS condition and has exactly
k − 1 zeros in each row. Note that the MDS condition only requires that each row
can have at most k − 1 zeros. Hence, Theorem A.3.A can help us to convert any
zero pattern of an MDS matrix to one that has exactly k − 1 zeros in each row
by introducing more zeros. This will be very useful later when simplifying the
GM–MDS conjecture.
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A.3 Proof of Hall’s Theorem and its generalization
In this section, first we will provide a very nice inductive proof of Hall’s Marriage
Theorem. Then, we will try to mimic this proof for its generalization. When doing
so, we will need to write down an even more general statement. This idea is actually
very similar to those in Chapter 2 (the proof of the GM–MDS conjecture) and
Chapter 3. Therefore, it may help to understand the main ideas behind the proofs
given in those chapters.

Proof of Hall’s Theorem
We will show that from a given graph G = (U, V,E) satisfying the marriage
condition, we can remove edges until we get a perfect matching. Let us do induction
on |U |. If |U | = 1, it is trivial. Let k ≥ 2 and suppose it is true when |U | < k. Let
|U | = k. We consider two cases:

1. (A.7) holds with equality for some Ω with 2 ≤ |Ω| ≤ k − 1.

We will remove all the edges between Ωc = U\Ω and NG(Ω). This will split
G into two disconnected parts: G1 = (U1, V1, E1), G2 = (U2, V2, E2), where
U1 = Ω, U2 = Ωc, V1 = NG(Ω), V2 = V \V1, and Ei = E ∩ (Ui × Vi).

Clearly, G1 satisfies (A.7). We will show that so does G2: For any Ω′ ⊂ U2,

|NG2(Ω′)| = |NG(Ω ∪ Ω′)| − |NG(Ω)| (A.12)

≥ |Ω|+ |Ω′| − |Ω| (A.13)

= |Ω′|. (A.14)

Hence, by the induction hypothesis, we can find perfect matching in both
disconnected parts of G.

2. (A.7) is strict for all Ω with 2 ≤ |Ω| ≤ k − 1.

If there is at least one node i ∈ U with a degree bigger than one (otherwise it
is a perfect matching), remove one of the edges from i. Since all inequalities
are strict this will not violate (A.7).

First attempt to prove the Generalized Hall’s Theorem
First let us rewrite the Generalized Hall’s Theorem in terms of the bipartite graphs:

Theorem A.3.B (Generalized Hall’s Theorem). Let G = (U, V,E) be a bipartite
graph with |U | = k, |V | = n. Suppose that for any nonempty Ω ⊂ U ,

|NG(Ω)| ≥ n− k + |Ω|. (A.15)
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Then, one can keep removing edges from E without violating any of the inequalities
until the degree of i is exactly n− k + 1 for all i ∈ U .

Note that adding extra dummy nodes to V should not have any effect on this property,
but the size of |V | appears in these inequalities. Also, whenwe try tomimic a similar
proof, another thing to observe is that if the equality holds for some Ω, the subgraph
GΩ = (Ω, NG(Ω), E ∩ (Ω×NG(Ω))) has fewer nodes on the right side than |V | = n

while the inequalities still carry the information about the size of the bigger graph.
Therefore, it is natural to remove this dependency to the number of nodes and focus
on a bit more general version of it:

Theorem A.4. Let G = (U, V,E) be a bipartite graph. Suppose that there exists an
integer c ≥ 0 such that, for any nonempty Ω ⊂ U ,

|NG(Ω)| ≥ c+ |Ω|. (A.16)

Then, one can keep removing edges from E without violating any of the inequalities
until the degree of i is exactly c+ 1 for all i ∈ U .

Now, assuming again that the equality holds for some Ω (i.e. |NG(Ω)| = c + |Ω|),
the subgraph GΩ can be resolved by the induction hypothesis. However, we still
need to guarantee that while removing edges from these subgraphs, we do not break
the inequality

|NG(Ω1 ∪ Ω2)| ≥ c+ |Ω1|+ |Ω2| (A.17)

for any Ω1 ⊂ Ω and Ω2 ⊂ Ωc. Note that by the induction hypothesis, we are able to
assume that after removing an edge, the inequality |NG(Ω1)| ≥ |Ω1| will still hold.
Then,

|NG(Ω1 ∪ Ω2)| = |NG(Ω1)|+ |NG(Ω2)−NG(Ω1)|

≥ |NG(Ω1)|+ |NG(Ω2)−NG(Ω)|

= |NG(Ω1)|+ |NG(Ω2 ∪ Ω)| − |NG(Ω)|

≥ c+ |Ω1|+ |NG(Ω2 ∪ Ω)| − c− |Ω|

= |NG(Ω2 ∪ Ω)|+ |Ω1| − |Ω|
?

≥ c+ |Ω1|+ |Ω2|.

Hence, it is sufficient to guarantee that |NG(Ω2∪Ω)| ≥ c+ |Ω2|+ |Ω| is not violated
(instead of |NG(Ω1 ∪ Ω2)| ≥ c + |Ω1| + |Ω2| for every Ω1 ⊂ Ω). Therefore, the
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individual nodes inside Ω do not have any role anymore, which suggests us to define
a new graph, where we merge all the nodes in Ω into a single node called Ω:

G ′ = (Ωc ∪ {Ω}, V, E ′), where

E ′ = (E ∩ (Ωc × V )) ∪ ({Ω} ×NG(Ω)).

Note that the node Ω is a placeholder for |Ω| nodes. Therefore, our new problem
now may have nodes that represent multiple nodes. Hence, this suggests us to
generalize the problem even more by assigning a weight to each of the nodes in
U . The whole point in working on a more general problem is that we want to
benefit from the induction hypothesis and generalizing the problem also makes the
induction hypothesis to cover the cases that we need.

A further generalization of Hall’s Theorem and Proof of Theorem A.3.B

Theorem A.5. Let G = (U, V,E) be a bipartite graph. Suppose that there exist
integers c ≥ 0 and di ≥ 1 for i ∈ U such that for any nonempty Ω ⊂ U ,

|NG(Ω)| ≥ c+
∑
i∈Ω

di. (A.18)

Then, one can keep removing edges from E without violating any of the inequalities
until the degree of i is exactly c+ di for all i ∈ U . �

Proof. We will do induction on |U |. If |U | = 1, it is trivial. Let k ≥ 2 and suppose
it is true when |U | < k. Let |U | = k. We consider two cases:

1. (A.18) is tight for some Ω with 2 ≤ |Ω| ≤ k − 1.

Let G1 = (Ω, V, E1), where E1 = E ∩ (Ω× V ) and G2 = (Ωc ∪ {Ω}, V, E2),
where Ωc = U − Ω and

E2 = (E − E1) ∪ {(Ω, j) : j ∈ NG(Ω)}.

In other words, to obtain G2, we merge the vertices in Ω into a single vertex
called Ω with the edges from that to every vertex in NG(Ω). Furthermore, let
dΩ =

∑
i∈Ω di.

We will show that (A.18) holds for G1 and G2 if and only if it holds for G (the
other direction⇐ is trivial). Let Ω1 ⊂ Ω,Ω2 ⊂ Ωc. Then,

|NG(Ω1 ∪ Ω2)| = |NG(Ω1)|+ |NG(Ω2)−NG(Ω1)|
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≥ |NG(Ω1)|+ |NG(Ω2)−NG(Ω)|

= |NG(Ω1)|+ |NG(Ω2 ∪ Ω)| − |NG(Ω)|

= |NG1(Ω1)|+ |NG2(Ω2 ∪ {Ω})| − (c+ dΩ)

≥

(
c+

∑
i∈Ω1

di

)
+

(
c+ dΩ +

∑
i∈Ω2

di

)
− (c+ dΩ)

= c+
∑

i∈Ω1∪Ω2

di.

Since |Ω| ≤ k − 1 and |Ωc ∪ {Ω}| ≤ k − 1, by the induction hypothesis, we
can remove edges from G1 and G2 until the degree of i is c+ di for all i ∈ U .
(Note that none of the edges from the vertex Ω in G2 will be removed since its
degree is already c+ dΩ.)

2. (A.18) is strict for all Ω with 2 ≤ |Ω| ≤ k − 1.
If there exists an edge (i, j) ∈ E such that the degree of i is at least c+ di + 1

and the degree of j is at least 2, then removing (i, j) will not violate (A.18)
because all the inequalities are strict except for |Ω| = k, in which case, the
left hand side is not affected. Now, we can assume that if a vertex i ∈ U has a
degree of at least c+ di + 1, then it is disconnected from the other vertices in
U . Then, removing any edge from such a vertex i will not violate any of the
inequalities.

As a special case, letting c = 0 and di = 1 for all i yields to the Hall’s Marriage
Theorem (Theorem A.2.A-A.2.B). Letting c = |V | − |U | and di = 1 for all i yields
to its generalization (Theorem A.3.A-A.3.B and [11, Thm. 2]). Hence, Theorem
A.5 covers all the other theorems given in Sections A.2 and A.3.
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