42 research outputs found

    Skin regeneration scaffolds: a multimodal bottom-up approach.

    Get PDF
    Skin wounds are a major social and financial burden. However, current treatments are suboptimal. The gradual comprehension of the finely orchestrated nature of intercellular communication has stimulated scientists to investigate growth factor (GF) or stem cell (SC) incorporation into suitable scaffolds for local delivery into wound beds in an attempt to accelerate healing. This review provides a critical evaluation of the status quo of current research into GF and SC therapy and subsequent future prospects, including benefits and possible long-term dangers associated with their use. Additionally, we stress the importance of a bottom-up approach in scaffold fabrication to enable controlled factor incorporation as well as production of complex scaffold micro- and nanostructures resembling that of natural extracellular matrix

    Controllable degradation kinetics of POSS nanoparticle-integrated poly(ε-caprolactone urea)urethane elastomers for tissue engineering applications.

    Get PDF
    Biodegradable elastomers are a popular choice for tissue engineering scaffolds, particularly in mechanically challenging settings (e.g. the skin). As the optimal rate of scaffold degradation depends on the tissue type to be regenerated, next-generation scaffolds must demonstrate tuneable degradation patterns. Previous investigations mainly focussed on the integration of more or less hydrolysable components to modulate degradation rates. In this study, however, the objective was to develop and synthesize a family of novel biodegradable polyurethanes (PUs) based on a poly(ε-caprolactone urea)urethane backbone integrating polyhedral oligomeric silsesquioxane (POSS-PCLU) with varying amounts of hard segments (24%, 28% and 33% (w/v)) in order to investigate the influence of hard segment chemistry on the degradation rate and profile. PUs lacking POSS nanoparticles served to prove the important function of POSS in maintaining the mechanical structures of the PU scaffolds before, during and after degradation. Mechanical testing of degraded samples revealed hard segment-dependent modulation of the materials' viscoelastic properties, which was attributable to (i) degradation-induced changes in the PU crystallinity and (ii) either the presence or absence of POSS. In conclusion, this study presents a facile method of controlling degradation profiles of PU scaffolds used in tissue engineering applications

    Computational modelling of wound healing insights to develop new treatments

    Get PDF
    About 1% of the population will suffer a severe wound during their life. Thus, it is really important to develop new techniques in order to properly treat these injuries due to the high socioeconomically impact they suppose. Skin substitutes and pressure based therapies are currently the most promising techniques to heal these injuries. Nevertheless, we are still far from finding a definitive skin substitute for the treatment of all chronic wounds. As a first step in developing new tissue engineering tools and treatment techniques for wound healing, in silico models could help in understanding the mechanisms and factors implicated in wound healing. Here, we review mathematical models of wound healing. These models include different tissue and cell types involved in healing, as well as biochemical and mechanical factors which determine this process. Special attention is paid to the contraction mechanism of cells as an answer to the tissue mechanical state. Other cell processes such as differentiation and proliferation are also included in the models together with extracellular matrix production. The results obtained show the dependency of the success of wound healing on tissue composition and the importance of the different biomechanical and biochemical factors. This could help to individuate the adequate concentration of growth factors to accelerate healing and also the best mechanical properties of the new skin substitute depending on the wound location in the body and its size and shape. Thus, the feedback loop of computational models, experimental works and tissue engineering could help to identify the key features in the design of new treatments to heal severe wounds

    Concomitant Control of Mechanical Properties and Degradation in Resorbable Elastomer-like Materials Using Stereochemistry and Stoichiometry for Soft Tissue Engineering

    Get PDF
    YesComplex biological tissues are highly viscoelastic and dynamic. Efforts to repair or replace cartilage, tendon, muscle, and vasculature using materials that facilitate repair and regeneration have been ongoing for decades. However, materials that possess the mechanical, chemical and resorption characteristics necessary to recapitulate these tissues have been difficult to mimic using synthetic resorbable biomaterials. Herein, we report a series of resorbable elastomer-like materials that are compositionally identical and possess varying ratios of cis:trans double bonds in the backbone. These features afford concomitant control over the mechanical and surface eroding degradation properties of these materials. We show the materials can be functionalized post-polymerization with bioactive species and enhance cell adhesion. Furthermore, an in vivo rat model demonstrates that degradation and resorption are dependent on succinate stoichiometry in the elastomers and the results show limited inflammation highlighting their potential for use in soft tissue regeneration and drug delivery

    Nanobio Silver: Its Interactions with Peptides and Bacteria, and Its Uses in Medicine

    Full text link

    Advanced technology-driven therapeutic interventions for prevention of tendon adhesion : design, intrinsic and extrinsic factor considerations

    No full text
    202205 bcfcNot applicableRGCOthersHong Kong Food and Health Bureau; Hong Kong Research Grants Council; Greata Group Co. Ltd., ChinaPublished24 month

    A novel POSS-coated quantum dot for biological application

    No full text
    Sarwat B Rizvi,1 Lara Yildirimer,1 Shirin Ghaderi,1 Bala Ramesh,1 Alexander M Seifalian,1,2 Mo Keshtgar1,21UCL Centre for Nanotechnology and Regenerative Medicine, Division of Surgery and Interventional Science, University College London, United Kingdom; 2Royal Free Hampstead NHS Trust Hospital, London, United KingdomAbstract: Quantum dots (QDs) are fluorescent semiconductor nanocrystals that have the potential for major advancements in the field of nanomedicine through their unique photophysical properties. They can potentially be used as fluorescent probes for various biomedical imaging applications, including cancer localization, detection of micrometastasis, image guided surgery, and targeted drug delivery. Their main limitation is toxicity, which requires a biologically compatible surface coating to shield the toxic core from the surrounding environment. However, this leads to an increase in QD size that may lead to problems of excretion and systemic sequestration. We describe a one pot synthesis, characterization, and in vitro cytotoxicity of a novel polyhedral oligomeric silsesquioxane (POSS)-coated CdTe-cored QD using mercaptosuccinic acid (MSA) and D-cysteine as stabilizing agents. Characterization was performed using transmission electron microscopy Fourier transform infrared spectroscopy, and photoluminescence studies. POSS-coated QDs demonstrated high colloidal stability and enhanced photostability on high degrees of ultraviolet (UV) excitation compared to QDs coated with MSA and D-cysteine alone (P value < 0.05). In vitro toxicity studies showed that both POSS and MSA-QDs were significantly less toxic than ionized salts of Cd+2 and Te-2. Confocal microscopy confirmed high brightness of POSS-QDs in cells at both 1 and 24 hours, indicating that these QDs are rapidly taken up by cells and remain photostable in a biological environment. We therefore conclude that a POSS coating confers biological compatibility, photostability, and colloidal stability while retaining the small size and unique photophysical properties of the QDs. The amphiphilic nature of the coating allows solubility in aqueous solutions and rapid transfer across cell membranes, enabling the use of lower concentrations of the QDs for an overall reduced toxicity particularly for prolonged live cell and in vivo imaging applications.Keywords: quantum dots, polyhedral oligomeric silsesquioxane, surface coating, cytotoxicit

    Engineering three-dimensional microenvironments towards in vitro disease models of the central nervous system

    No full text
    202205 bcfcAccepted ManuscriptOthersNational Natural Science Foundation of China; Hong Kong Polytechnic UniversityPublishe

    Electrospun polymeric micro/nanofibrous scaffolds for long-term drug release and their biomedical applications

    No full text
    2016-2017 > Academic research: refereed > Publication in refereed journalbcrcAccepted ManuscriptSelf-fundedPublishe
    corecore