21 research outputs found

    Survey of Deep Learning Based Multimodal Emotion Recognition

    Get PDF
    Multimodal emotion recognition aims to recognize human emotional states through different modalities related to human emotion expression such as audio, vision, text, etc. This topic is of great importance in the fields of human-computer interaction, a.pngicial intelligence, affective computing, etc., and has attracted much attention. In view of the great success of deep learning methods developed in recent years in various tasks, a variety of deep neural networks have been used to learn high-level emotional feature representations for multimodal emotion recog-nition. In order to systematically summarize the research advance of deep learning methods in the field of multi-modal emotion recognition, this paper aims to present comprehensive analysis and summarization on recent multi-modal emotion recognition literatures based on deep learning. First, the general framework of multimodal emotion recognition is given, and the commonly used multimodal emotional dataset is introduced. Then, the principle of representative deep learning techniques and its advance in recent years are briefly reviewed. Subsequently, this paper focuses on the advance of two key steps in multimodal emotion recognition: emotional feature extraction methods related to audio, vision, text, etc., including hand-crafted feature extraction and deep feature extraction; multi-modal information fusion strategies integrating different modalities. Finally, the challenges and opportunities in this field are analyzed, and the future development direction is pointed out

    Antioxidant properties of fermented soymilk and its anti-inflammatory effect on DSS-induced colitis in mice

    Get PDF
    Lactic acid-fermented soymilk as a new plant-based food has aroused extensive attention because of its effects on nutrition and health. This study was conducted to delve into the antioxidative and anti-inflammatory activities of lactic acid-fermented soymilk. To elucidate the key factors that affect the antioxidant properties of fermented soymilk, the strains and preparation process were investigated. Findings show that the fermented soymilk prepared using hot-water blanching method (BT-80) demonstrated a better antioxidant activity than that using conventional method (CN-20). Besides, a huge difference was observed among the soymilks fermented with different strains. Among them, the YF-L903 fermented soymilk demonstrated the highest ABTS radical scavenging ability, which is about twofold of that of unfermented soymilk and 1.8-fold of that of L571 fermented soy milk. In vitro antioxidant experiments and the analysis of H2O2-induced oxidative damage model in Caco-2 cells showed that lactic acid-fermentation could improve the DPPH radical scavenging ability, ABTS radical scavenging ability, while reducing the content of reactive oxygen species (ROS) and malondialdehyde (MDA) in Caco-2 cells induced by H2O2, and increasing the content of superoxide dismutase (SOD). Consequently, cells are protected from the damage caused by active oxidation, and the repair ability of cells is enhanced. To identify the role of fermented soymilk in intestinal health, we investigate its preventive effect on dextran sodium sulfate-induced colitis mouse models. Results revealed that the fermented soymilk can significantly improve the health conditions of the mice, including alleviated of weight loss, relieved colonic injury, balanced the spleen-to-body weight ratio, reduced the disease index, and suppressed the inflammatory cytokines and oxidant indexes release. These results suggest that YF-L903 fermented soymilk is a promising natural antioxidant sources and anti-inflammatory agents for the food industry. We believe this work paves the way for elucidating the effect of lactic acid-fermented soymilk on intestinal health, and provides a reference for the preparation of fermented soymilk with higher nutritional and health value

    A Review of Three-Dimensional Facial Asymmetry Analysis Methods

    No full text
    Three-dimensional symmetry and coordination are important factors in facial aesthetics, and analysis of facial asymmetry is the basis for clinical diagnosis, treatment, and doctor–patient communication. With the development of three-dimensional measurement and data analysis technology, facial asymmetry analysis methods are mainly based on facial anatomic landmarks, original-mirror alignment algorithm, facial anthropometric mask, and artificial intelligence. This review summarizes the methods of three-dimensional facial asymmetry analysis, and current research progress in the field. The advantages and limitations of various methods are analyzed and discussed to provide a reference for oral clinical application

    Evaluation of adaptation of the polylactic acid pattern of maxillary complete dentures fabricated by fused deposition modelling technology: A pilot study.

    No full text
    OBJECTIVE:To quantitatively evaluate maxillary complete dentures fabricated from polylactic acid (PLA) using fused deposition modelling (FDM) technology. METHODS:A digital maxillary complete denture was prepared based on a standard maxillary edentulous plaster model. The PLA pattern was printed by a FDM machine, with 5 repetitions, while another 5 wax patterns were printed as control group, using a high accuracy three-dimensional (3D) wax printer. The patterns were scanned with a 3D scanner. A light-body silicone film was made after each denture pattern had been totally seated on the plaster model, and was scanned to determine its thickness, which reflected the 3D space between the plaster model and the tissue surface of the denture pattern. The overall area was separated into four parts: primary stress-bearing area, secondary stress-bearing area, border seal area and relief area, and the average deviation of these four parts were measured. The values were analyzed by independent t-test. RESULTS:The overall mean value and standard deviation of space between PLA denture patterns and plaster model was 0.277 ± 0.021 mm, while that of the wax denture patterns was 0.279 ± 0.045 mm, which showed a good fit overall. No statistically significant ( > 0.05) difference was observed between the PLA patterns and wax patterns. CONCLUSIONS:The adaptation of the PLA pattern of maxillary complete denture printed by FDM technology is comparable to that prepared by wax printer, and can satisfy the accuracy requirements

    Fabrication and characterization of selective laser melting printed Ti–6Al–4V alloys subjected to heat treatment for customized implants design

    No full text
    Selective laser melting (SLM) is a promising technique capable of rapidly fabricating customized implants having desired macro- and micro-structures by using computer-aided design models. However, the SLM-based products often have non-equilibrium microstructures and partial surface defects because of the steep thermal gradients and high solidification rates that occur during the laser melting. To meet clinical requirements, a heat treatment was used to tailor the physiochemical properties, homogenize the metallic microstructures, and eliminate surface defects, expecting to improve the cytocompatibility in vitro. Compared with the as-printed Ti–6Al–4V substrate, the heat-treated substrate had a more hydrophilic, rougher and more homogeneous surface, which should promote the early cell attachment, proliferation and osseointegration. More importantly, a crystalline rutile TiO2 layer formed during the heat treatment, which should greatly promote the biocompatibility and corrosion resistance of the implant. Compared to the untreated surfaces, the adhesion and proliferation of human bone mesenchymal stem cells (hBMSCs) on heat-treated substrates were significantly enhanced, implying an excellent cytocompatibility after annealing. Therefore, these findings provide an alternative to biofunctionalized SLM-based Ti–6Al–4V implants with optimized physiochemical properties and biocompatibility for orthopedic and dental applications

    A Conjugated Polyelectrolyte with Pendant High Dense Short-Alkyl-Chain-Bridged Cationic Ions: Analyte-Induced Light-Up and Label-Free Fluorescent Sensing of Tumor Markers

    No full text
    A novel cationic water-soluble conjugated polyelectrolyte (CPE) of polyfluorene that contains 15% fraction of 2,1,3-benzothiadiazole (BT) units (PFC3NBT) has been obtained. PFC3NBT demonstrates intramolecular energy transfer from the fluorene segments to BT sites when negatively charged species (SDS or DNAs) are added, following by a shift in emission color from blue to green, has been developed. The high density of positive charges and pendent short alkyl chains of N-propyltrimethylammoniums endow PFC3NBT with high solubility and high fluorescence quantum efficiency of 33.6% in water. The fluorescence emission properties were investigated in the presence of adverse buffer solutions, different surfactants and DNA strands. Interesting fluorescence emission quenching at short wavelength and fluorescence resonance energy transfer (FRET) induced light-on at BT sites were observed and discussed in detail. Very different from previous reports, the fluorescence emission spectra transition happens with an enhancement of integrated fluorescent intensity. The analytes induced a light-up sensing system was studied with a PFC3NBT/SDS complex mode and confirmed with DNA/DNA-FAM sensing systems. More exciting preliminary results on label-free sensing of tumor markers were also reported by investigating the unique fluorescence response to 11 kinds of proteins. These results provide a new insight view for designing CPEs with light-up and label-free features for biomolecular sensing

    Subjective evaluation of facial asymmetry with three-dimensional simulated images among the orthodontists and laypersons: a cross-sectional study

    No full text
    Abstract Objectives We used three-dimensional (3D) virtual images to undertake a subjective evaluation of how different factors affect the perception of facial asymmetry among orthodontists and laypersons with the aim of providing a quantitative reference for clinics. Materials and methods A 3D virtual symmetrical facial image was acquired using FaceGen Modeller software. The left chin, mandible, lip and cheek of the virtual face were simulated in the horizontal (interior/exterior), vertical (up/down), or sagittal (forward or backward) direction in 3, 5, and 7 mm respectively with Maya software to increase asymmetry for the further subjective evaluation. A pilot study was performed among ten volunteers and 30 subjects of each group were expected to be included based on 80% sensitivity in this study. The sample size was increased by 60% to exclude incomplete and unqualified questionnaires. Eventually, a total of 48 orthodontists and 40 laypersons evaluated these images with a 10-point visual analog scale (VAS). The images were presented in random order. Each image would stop for 30 s for observers with a two-second interval between images. Asymmetry ratings and recognition accuracy for asymmetric virtual faces were analyzed to explore how different factors affect the subjective evaluation of facial asymmetry. Multivariate linear regression and multivariate logistic regression models were used for statistical data analysis. Results Orthodontists were found to be more critical of asymmetry than laypersons. Our results showed that observers progressively decreased ratings by 1.219 on the VAS scale and increased recognition rates by 2.301-fold as the degree of asymmetry increased by 2 mm; asymmetry in the sagittal direction was the least noticeable compared with the horizontal and vertical directions; and chin asymmetry turned out to be the most sensitive part among the four parts we simulated. Mandible asymmetry was easily confused with cheek asymmetry in the horizontal direction. Conclusions The degree, types and parts of asymmetry can affect ratings for facial deformity as well as the accuracy rate of identifying the asymmetrical part. Although orthodontists have higher accuracy in diagnosing asymmetrical faces than laypersons, they fail to correctly distinguish some specific asymmetrical areas
    corecore