2 research outputs found

    Self-Assembled DNA Dendrimer Nanoparticle for Efficient Delivery of Immunostimulatory CpG Motifs

    No full text
    Dendrimer-like DNA nanostructures have attractive properties such as mechanical stability, highly branched nanostructure, customized sizes, and biocompatibility. In this study, we construct programmable DNA dendrimeric nanoparticles as efficient vehicles to deliver immunostimulatory cytosine-phosphate-guanosine (CpG) sequences for activation of the immune response. DNA dendrimers decorated with CpG-containing hairpin-loops triggered stronger immune response characterized by pro-inflammatory cytokines production, in contrast to DNA dendrimers loading linear CpG. After further modification with TAT peptide, a typical cell-penetrating peptide, on the surface of the nanocarriers, CpG loops-loaded DNA dendrimers showed the enhanced cell internalization and cytokines production. The TAT-DNA dendrimer-CpG loops constructs did not affect the viability of immune cells and no detectable cytotoxicity was observed. Our results demonstrate that the DNA dendrimers can serve as designable and safe vehicles for delivery of immune modulators and anticancer drugs

    Desorption Separation Ionization Mass Spectrometry (DSI-MS) for Rapid Analysis of COVID-19

    No full text
    During the coronavirus disease 2019 (COVID-19) pandemic, which has witnessed over 772 million confirmed cases and over 6 million deaths globally, the outbreak of COVID-19 has emerged as a significant medical challenge affecting both affluent and impoverished nations. Therefore, there is an urgent need to explore the disease mechanism and to implement rapid detection methods. To address this, we employed the desorption separation ionization (DSI) device in conjunction with a mass spectrometer for the efficient detection and screening of COVID-19 urine samples. The study encompassed patients with COVID-19, healthy controls (HC), and patients with other types of pneumonia (OP) to evaluate their urine metabolomic profiles. Subsequently, we identified the differentially expressed metabolites in the COVID-19 patients and recognized amino acid metabolism as the predominant metabolic pathway involved. Furthermore, multiple established machine learning algorithms validated the exceptional performance of the metabolites in discriminating the COVID-19 group from healthy subjects, with an area under the curve of 0.932 in the blind test set. This study collectively suggests that the small-molecule metabolites detected from urine using the DSI device allow for rapid screening of COVID-19, taking just three minutes per sample. This approach has the potential to expand our understanding of the pathophysiological mechanisms of COVID-19 and offers a way to rapidly screen patients with COVID-19 through the utilization of machine learning algorithms
    corecore