53 research outputs found

    Some Essential Issues and Outlook for Industrialization of Cu-III-VI2 Thin-Film Solar Cells

    Get PDF
    The concept and method of in-line sputtering and selenization become the industrial standard for Cu-III-VI2 solar cell fabrication, but it is a difficult work to control and predict the electrical and optical performances, which are closely related to the chemical composition of the film. This chapter addresses the material design, device design, and process design using chemical compositions relating parameters. Compositional variation leads to change in the poisson equation, current equation and continuity equation governing the device design. To make the device design much realistic and meaningful, we have to build a model that relates the opto-electrical performance to the chemical composition of the film. The material and device structural parameters are input into the process simulation to give a complete process control parameters and method. We calculated neutral defect concentrations of non-stoichiometric CuMSe2 (M-In, Ga) under the specific atomic chemical potential conditions. The electrical and optical performance has also been investigated for the development of full function analytical solar cell simulator. Module instability and their origins are listed. After that progress of CZTS (Cu2ZnS4) is briefed on the future work of CIGS (CuInGaSe2). The future prospects regarding the development of CIGS thin-film solar cells (TFSCs) have also been discussed

    Suppression of MAPK11 or HIPK3 reduces mutant Huntingtin levels in Huntington's disease models.

    Get PDF
    Most neurodegenerative disorders are associated with accumulation of disease-relevant proteins. Among them, Huntington disease (HD) is of particular interest because of its monogenetic nature. HD is mainly caused by cytotoxicity of the defective protein encoded by the mutant Huntingtin gene (HTT). Thus, lowering mutant HTT protein (mHTT) levels would be a promising treatment strategy for HD. Here we report two kinases HIPK3 and MAPK11 as positive modulators of mHTT levels both in cells and in vivo. Both kinases regulate mHTT via their kinase activities, suggesting that inhibiting these kinases may have therapeutic values. Interestingly, their effects on HTT levels are mHTT-dependent, providing a feedback mechanism in which mHTT enhances its own level thus contributing to mHTT accumulation and disease progression. Importantly, knockout of MAPK11 significantly rescues disease-relevant behavioral phenotypes in a knockin HD mouse model. Collectively, our data reveal new therapeutic entry points for HD and target-discovery approaches for similar diseases

    Vitamin D and cause-specific vascular disease and mortality:a Mendelian randomisation study involving 99,012 Chinese and 106,911 European adults

    Get PDF

    Two-step method for growth of adlayer-free large-area monolayer graphene on Cu foil

    No full text
    Chemical vapor deposition is the most promising approach for synthesis of large-area monolayer graphene on Cu foil. However, numerous factors can result in formation of adlayers, such as the morphology of the Cu foil, methane concentration, and growth temperature. Here, we report atmospheric pressure chemical vapor deposition growth of large-area adlayer-free monolayer graphene by the two-step ‘bottom-up-etching’ method. The experimental results showed that a temperature increase in the second step can dramatically accelerate etching of the bottom graphene layer. A growth model for adlayer-free monolayer graphene on Cu foil is proposed

    Fragile States Metric System: An Assessment Model Considering Climate Change

    No full text
    As a measure of the sustainability of a country, a state’s fragility is attributed to numerous elements. Meanwhile, climate change is a potential global threat in the 21st century, which may further aggravate the fragility of countries. Concerning this issue, we propose an index system, the Fragile States Metric System (FSMS) to measure state fragility, which includes five dimensions: climate change, cohesion, economy, politics and society. Our FSMS consists of the Climate Change Metric System (CCMS) and Modified Conflict Assessment System (M-CAS). While establishing the model, we introduce a new hybrid evaluation method, Gray Relational Analysis (GRA)-Entropy method and variable weight function model, to calculate the weights. As the result, from 2007 to 2017, European countries, in particular Finland, Norway, Switzerland, Sweden and Denmark, remained the top 5 most stable countries. Robustness analysis proves that FSMS is a relatively stable model. In addition, in the application of FSMS, we introduce the economic theory, Pareto Optimum, to measure intervention costs while mitigating state fragility

    Pulmonary and clinical outcomes of patients with severe rigid scoliosis and type I respiratory failure treated with halo-pelvic distraction

    No full text
    Abstract Background The severe rigid scoliosis patients with type I respiratory failure could not tolerate complicated corrective surgery. Preoperative halo-pelvic distraction (HPD) is used to reduce the curve magnitude and improve the pulmonary function before surgery. The present study aimed to retrospectively analyze the pulmonary and clinical outcomes of preoperative HPD in severe rigid spinal deformity with type I respiratory failure. Methods Eighteen cases of severe rigid scoliosis and type I respiratory failure treated with preoperative HPD and corrective surgery for spinal deformity between 2016 and 2018 were retrospectively reviewed. Patient demographics, major coronal curve and kyphosis, correction rates, heights, pulmonary function, distraction time, and postoperative neurological complications were recorded for all cases. Results The averaged duration of distraction was 9.1 ± 2.3 months. The coronal curve was corrected from 168° ± 14° to 58° ± 11° at the end of HPD. The kyphosis curve reduced from 151° ± 29° to 65° ± 10°. Meanwhile, the mean stand body height increased by 23.9 ± 5.3 cm. Significantly increased mean FVC (1.52 ± 0.43 L vs. 0.95 ± 0.44 L) and improved percent-predicted values for FVC (37 ± 10% vs. 23 ± 9%) were observed after HPD. The pressure of oxygen (PaO2) increased from 54.5 ± 2.0 to 84.8 ± 4.7 mmHg. Scoliosis and kyphosis curve, respectively, averaged 48 ± 8°and 30 ± 14° after final fusion and instrumentation, with a mean correction of 71% and 80%, respectively. No severe complication occurred during the distraction. Conclusions HPD may be useful for severe rigid scoliosis patients with type I respiratory failure. Pulmonary functions in patients with severe rigid scoliosis can be significantly improved by HPD. They are then better able to tolerate complicated corrective surgery

    Preparation and Characterization of Polypropylene/Sepiolite Nanocomposites for Potential Application in Automotive Lightweight Materials

    No full text
    Polypropylene (PP)/sepiolite nanocomposites were prepared using the melt blending technique. The effects of nano-sepiolite content on the mechanical property, thermal property, crystallinity, morphology and rheological property of PP/sepiolite nanocomposites were investigated. The organic modified sepiolites (OSep) were dispersed evenly in PP matrix after surface treatment. The addition of OSep improved the storage modulus and thermal stability, showing a strong interaction between OSep and PP matrix. With the increase of OSep content, the fluidity of PP/OSep composites first increased due to the lubrication of surface modifiers and then decreased due to the interaction between OSep and PP. The size of the toughening agent elastomer first increased and then decreased, and the impact notched strength of PP/Osep composites first decreased and then increased. The loading of OSep also reduced the crystallinity and shrinkage rate of PP. PP/OSep nanocomposites have potential applications in high-performance automotive lightweight materials

    Preparation and Characterization of Polypropylene/Sepiolite Nanocomposites for Potential Application in Automotive Lightweight Materials

    No full text
    Polypropylene (PP)/sepiolite nanocomposites were prepared using the melt blending technique. The effects of nano-sepiolite content on the mechanical property, thermal property, crystallinity, morphology and rheological property of PP/sepiolite nanocomposites were investigated. The organic modified sepiolites (OSep) were dispersed evenly in PP matrix after surface treatment. The addition of OSep improved the storage modulus and thermal stability, showing a strong interaction between OSep and PP matrix. With the increase of OSep content, the fluidity of PP/OSep composites first increased due to the lubrication of surface modifiers and then decreased due to the interaction between OSep and PP. The size of the toughening agent elastomer first increased and then decreased, and the impact notched strength of PP/Osep composites first decreased and then increased. The loading of OSep also reduced the crystallinity and shrinkage rate of PP. PP/OSep nanocomposites have potential applications in high-performance automotive lightweight materials

    Adsorption of As(V) from Aqueous Solution on Chitosan-Modified Diatomite

    No full text
    A novel chitosan (CS)-modified diatomite (Dt) was prepared by a simple mixture in the mass ratio to remove As(V) from aqueous solution in this research. The CS-modified Dt adsorbent was characterized by scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), and X-ray powder diffraction (XRD) analysis. The parameters to influence the adsorption of As(V) ion were studied under such conditions as kinetics, adsorption isotherm, and pH effect. The results revealed that adsorption of As(V) was initially rapid and the equilibrium time was reached after 40 min. The optimal value of the pH was 5.0 for better adsorption. The equilibrium data were well fitted to the Langmuir isotherm compared to the Freundlich isotherm, and exhibited the highest capacity and removal efficiency of 94.3% under an initial As(V) concentration of 5 mg/L. The kinetic data were well described by the pseudo-second-order model. In addition, 0.1 M NaOH has the best desorption efficiency of As(V) adsorbed on CS-modified Dt, and the removal efficiency of As(V) was still higher than 90% when after six adsorption-desorption cycles. These results showed that the CS-modified Dt could be considered as a potential adsorbent for the removal of As(V) in aqueous solution
    • …
    corecore