64 research outputs found

    Modeling of two-phase flow in heterogeneous wet porous media

    Get PDF
    The characterization of two-phase flow has been commonly based on homogeneous wet capillary models, which are limited to heterogeneous wet porous media. In this work, capillary pressure and relative permeability models for three heterogeneous wet systems are derived, which enable the analysis of the effect of oil-wet ratio on the two-phase flow mechanism. The capillary pressures, relative permeabilities and water cut curves of three systems are simulated at the primary drainage stage. The results show that water-wet and oil-wet systems exhibit drainage and imbibition characteristics, respectively, while heterogeneous wet systems show both of these characteristics, and a large oil- wet ratio is favourable to oil imbibition. Mixed-wet large and mixed-wet small systems have water-wet and oil-wet characteristics, respectively, at the end and the beginning of oil displacement. At the drainage stage, the oil-wet ratio can significantly decrease oil conductivity, while water conductivity is enhanced. The conductivity difference between oil and water firstly decreases and then increases with rising water saturation, and the difference diminishes with the increase in oil-wet ratio. The oil-wet ratio can reduce water displacement efficiency, and its effects on the water cut curves vary between the three systems due to wettability distribution and pore-size mutation. The mixed-wet small system has the strongest oil imbibition ability caused by the largest capillary pressure in oil-wet pores and the smallest drainage pressure in water-wet pores, and high water conductivity causes the greatest water cut. The trend of variations in the mixed-wet large system is opposite to that in the mixed-wet small system, and the fractional-wet system is located between the other two systems.Cited as: Xiao, Y., He, Y., Zheng, J., Zhao, J. Modeling of two-phase flow in heterogeneous wet porous media. Capillarity, 2022, 5(3): 41-50. https://doi.org/10.46690/capi.2022.03.0

    A critical review of capillary pressure behavior and characterization in fractional-wet reservoirs

    Get PDF
    Fractional wettability is common in oil and gas reservoirs, resulting in complex fluid distribution and transport phenomena. A precise understanding of capillary pressure behavior and characterization in fractional-wet reservoirs, including the two-phase flow mechanisms within pores and relationship between capillary pressure and saturation in porous media, is significant to enhanced oil recovery strategies. In this paper, an in-depth review of the two-phase flow mechanisms in fractional-wet pores and capillary entry pressures in various displacement processes was conducted. Furthermore, the effects of oil-wet proportion and contact angle on capillary pressure characterization were summarized, highlighting the emergence of similar capillary pressure curves under conditions of low oil-wet proportions. The prediction models for capillary pressure, containing empirical equations and physics-based models were discussed, with the aim of clarifying the most effective prediction methodologies. Finally, the review was finalized by outlining key findings and future directions for both experimental and theoretical studies in the realm of capillary pressure behavior and characterization.Document Type: Invited reviewCited as: Xiao, Y., You, Z., Wang, L., Du, Z. A critical review of capillary pressure behavior and characterization in fractional-wet reservoirs. Capillarity, 2024, 10(1): 12-21. https://doi.org/10.46690/capi.2024.01.0

    A critical review of capillary pressure behavior and characterization in fractional-wet reservoirs

    Get PDF
    Fractional wettability is common in oil and gas reservoirs, resulting in complex fluid distribution and transport phenomena. A precise understanding of capillary pressure behavior and characterization in fractional-wet reservoirs, including the two-phase flow mechanisms within pores and relationship between capillary pressure and saturation in porous media, is significant to enhanced oil recovery strategies. In this paper, an in-depth review of the two-phase flow mechanisms in fractional-wet pores and capillary entry pressures in various displacement processes was conducted. Furthermore, the effects of oil-wet proportion and contact angle on capillary pressure characterization were summarized, highlighting the emergence of similar capillary pressure curves under conditions of low oil-wet proportions. The prediction models for capillary pressure, containing empirical equations and physics-based models were discussed, with the aim of clarifying the most effective prediction methodologies. Finally, the review was finalized by outlining key findings and future directions for both experimental and theoretical studies in the realm of capillary pressure behavior and characterization

    Soliton Molecules and Multisoliton States in Ultrafast Fibre Lasers: Intrinsic Complexes in Dissipative Systems

    Get PDF
    Benefiting from ultrafast temporal resolution, broadband spectral bandwidth, as well as high peak power, passively mode-locked fibre lasers have attracted growing interest and exhibited great potential from fundamental sciences to industrial and military applications. As a nonlinear system containing complex interactions from gain, loss, nonlinearity, dispersion, etc., ultrafast fibre lasers deliver not only conventional single soliton but also soliton bunching with different types. In analogy to molecules consisting of several atoms in chemistry, soliton molecules (in other words, bound solitons) in fibre lasers are of vital importance for in-depth understanding of the nonlinear interaction mechanism and further exploration for high-capacity fibre-optic communications. In this Review, we summarize the state-of-the-art advances on soliton molecules in ultrafast fibre lasers. A variety of soliton molecules with different numbers of soliton, phase-differences and pulse separations were experimentally observed owing to the flexibility of parameters such as mode-locking techniques and dispersion control. Numerical simulations clearly unravel how different nonlinear interactions contribute to formation of soliton molecules. Analysis of the stability and the underlying physical mechanisms of bound solitons bring important insights to this field. For a complete view of nonlinear optical phenomena in fibre lasers, other dissipative states such as vibrating soliton pairs, soliton rains, rogue waves and coexisting dissipative solitons are also discussed. With development of advanced real-time detection techniques, the internal motion of different pulsing states is anticipated to be characterized, rendering fibre lasers a versatile platform for nonlinear complex dynamics and various practical applications

    Southward key pathways of radioactive materials from the Fukushima Daiichi Nuclear Power Plant

    Get PDF
    This study examines the interannual and seasonal variations in the distribution of radioactive materials released from the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident in the surface layer of the Kuroshio Extension (KE). Focusing on the contrasting flow conditions in 2015 (southward) and 2021 (northward) – significant oscillatory phases of the KE’s mean flow axis – the research analyzes the impact of seasonal variations on particle transport pathways. The findings reveal distinct seasonal patterns: summer releases primarily follow the eastward KE movement, while winter releases exhibit a southward trajectory. The study further quantifies the transport timescales, demonstrating that particles can reach the Luzon Strait within 10 months, subsequently diverging northward along the Kuroshio and northwestward along the Kuroshio Branch Current, potentially entering the South China Sea within 13 months. This research contributes valuable insights into the seasonal dynamics governing the dispersion and transport of Fukushima-derived radioisotopes in the surface ocean, highlighting the crucial role of the KE in influencing their trajectories

    Feasibility of GNSS-R Altimetry Using CyGNSS 8-Satellite Constellation Mission Data

    Get PDF
    Ponencia expuesta en Scientific Assembly of the International Association of Geodesy (2021) celebrado en Beijing del 28 de junio al 2 de juli

    Measurement of Stimulated Raman Side-Scattering Predominance and Energetic Importance in the Compression Stage of the Double-Cone Ignition Approach to Inertial Confinement Fusion

    Full text link
    Due to its particular geometry, stimulated Raman side-scattering (SRSS) drives scattered light emission at non-conventional directions, leading to scarce and complex experimental observations. Experimental campaigns at the SG-II UP facility have measured the scattered light driven by SRSS over a wide range of angles, showing an emission at large polar angles, sensitive to the plasma profile and laser polarization. Furthermore, direct comparison with back-scattering measurement has evidenced SRSS as the dominant Raman scattering process in the compression stage, leading to the scattering loss of about 5\% of the total laser energy. The predominance of SRSS was confirmed by 2D particle-in-cell simulations, and its angular spread has been corroborated by ray-tracing simulations. The main implication is that a complete characterization of the SRS instability and an accurate measurement of the energy losses require the collection of the scattered light in a broad range of directions. Otherwise, spatially limited measurement could lead to an underestimation of the energetic importance of stimulated Raman scattering

    Soliton Molecules and Multisoliton States in Ultrafast Fibre Lasers: Intrinsic Complexes in Dissipative Systems

    Get PDF
    Benefiting from ultrafast temporal resolution, broadband spectral bandwidth, as well as high peak power, passively mode-locked fibre lasers have attracted growing interest and exhibited great potential from fundamental sciences to industrial and military applications. As a nonlinear system containing complex interactions from gain, loss, nonlinearity, dispersion, etc., ultrafast fibre lasers deliver not only conventional single soliton but also soliton bunching with different types. In analogy to molecules consisting of several atoms in chemistry, soliton molecules (in other words, bound solitons) in fibre lasers are of vital importance for in-depth understanding of the nonlinear interaction mechanism and further exploration for high-capacity fibre-optic communications. In this Review, we summarize the state-of-the-art advances on soliton molecules in ultrafast fibre lasers. A variety of soliton molecules with different numbers of soliton, phase-differences and pulse separations were experimentally observed owing to the flexibility of parameters such as mode-locking techniques and dispersion control. Numerical simulations clearly unravel how different nonlinear interactions contribute to formation of soliton molecules. Analysis of the stability and the underlying physical mechanisms of bound solitons bring important insights to this field. For a complete view of nonlinear optical phenomena in fibre lasers, other dissipative states such as vibrating soliton pairs, soliton rains, rogue waves and coexisting dissipative solitons are also discussed. With development of advanced real-time detection techniques, the internal motion of different pulsing states is anticipated to be characterized, rendering fibre lasers a versatile platform for nonlinear complex dynamics and various practical applications

    Reasonable production allocation model of gas wells for deep tight gas reservoirs with the edge water

    Get PDF
    Deep tight gas reservoirs are one of the important unconventional gas reservoirs. Deep burial, tight reservoirs have many characteristics, including diverse accumulation patterns, multiple accumulation regulations, low natural energy generation, complex gas–water relationship, and intricate seepage mechanism. These features of gas reservoirs put forward the requirement for new methods for a reasonable production allocation of horizontal wells and optimization of such allocations from the perspective of stress sensitivity. While CO2 huff-and-puff-based models, numerical simulation models, and thermos-hydrodynamic models have been built to solve these issues, there is still a lack of theoretical guidance for reasonable production allocation, especially with the edge-water problem. Here, we present a new one-dimensional mathematical and physical model to capture the stable movement of the gas–water interface in deep tight edge-water gas reservoirs. Our results show that there is a starting pressure in deep tight gas reservoirs. The starting pressure gradient increases with the growth of water saturation, which is far greater than the starting pressure gradient of medium, shallow gas reservoirs under the same water saturation. In addition, by considering the stable movement of the gas–water interface under the starting pressure, we found that the gas well has a larger upper limit of production differential pressure, a smaller seepage velocity, and a lower upper limit of production allocation. Finally, we make a comparison between our model results and production characteristics of real gas wells and find a consistency between the model results with real data. Our model provides a theoretical framework for reasonable production allocation of gas wells in deep tight gas reservoirs with the edge water
    • …
    corecore