24 research outputs found

    Quantum imaging of biological organisms through spatial and polarization entanglement

    Full text link
    Quantum imaging can potentially provide certain advantages over classical imaging. Thus far, however, the signal-to-noise ratios (SNRs) are poor; the resolvable pixel counts are low; biological organisms have not been imaged; birefringence has not been quantified. Here, we introduce quantum imaging by coincidence from entanglement (ICE). Utilizing spatially and polarization entangled photon pairs, ICE exhibits higher SNRs, greater resolvable pixel counts, imaging of biological organisms, and ghost birefringence quantification; it also enables 25 times greater suppression of stray light than classical imaging. ICE can potentially empower quantum imaging towards new applications in life sciences and remote sensing.Comment: 57 pages, 4 figures, 18 supplementary figures, 7 supplementary notes, 1 supplementary tabl

    Soil nitrogen concentration mediates the relationship between leguminous trees and neighbor diversity in tropical forests

    Get PDF
    Legumes provide an essential service to ecosystems by capturing nitrogen from the atmosphere and delivering it to the soil, where it may then be available to other plants. However, this facilitation by legumes has not been widely studied in global tropical forests. Demographic data from 11 large forest plots (16–60 ha) ranging from 5.25° S to 29.25° N latitude show that within forests, leguminous trees have a larger effect on neighbor diversity than non-legumes. Where soil nitrogen is high, most legume species have higher neighbor diversity than non-legumes. Where soil nitrogen is low, most legumes have lower neighbor diversity than non-legumes. No facilitation effect on neighbor basal area was observed in either high or low soil N conditions. The legume–soil nitrogen positive feedback that promotes tree diversity has both theoretical implications for understanding species coexistence in diverse forests, and practical implications for the utilization of legumes in forest restoration

    Direct and indirect effects of climate on richness drive the latitudinal diversity gradient in forest trees

    Get PDF
    Data accessibility statement: Full census data are available upon reasonable request from the ForestGEO data portal, http://ctfs.si.edu/datarequest/ We thank Margie Mayfield, three anonymous reviewers and Jacob Weiner for constructive comments on the manuscript. This study was financially supported by the National Key R&D Program of China (2017YFC0506100), the National Natural Science Foundation of China (31622014 and 31570426), and the Fundamental Research Funds for the Central Universities (17lgzd24) to CC. XW was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB3103). DS was supported by the Czech Science Foundation (grant no. 16-26369S). Yves Rosseel provided us valuable suggestions on using the lavaan package conducting SEM analyses. Funding and citation information for each forest plot is available in the Supplementary Information Text 1.Peer reviewedPostprin

    A Novel Molecular Mechanism of IKKε-Mediated Akt/mTOR Inhibition in the Cardiomyocyte Autophagy after Myocardial Infarction

    No full text
    Autophagy of cardiomyocytes after myocardial infarction (MI) is an important factor affecting the prognosis of MI. Excessive autophagy can lead to massive death of cardiomyocytes, which will seriously affect cardiac function. IKKε plays a crucial role in the occurrence of autophagy, but the functional role in MI remains largely unknown. To evaluate the impact of IKKε on the autophagy of cardiomyocytes after MI, MI was induced by surgical left anterior descending coronary artery ligation in IKKε knockout (KO) mice and wild-type (WT) mice. Starvation of H9c2 cells with IKKε siRNA and rescued with IKKε overexpressed afterwards to test the mechanism of IKKε in autophagy in vitro. Our results demonstrated that the expression of IKKε was upregulated in mice myocardial tissues which were consistent with cardiomyocyte autophagy after MI. Significantly, the IKKε KO mice showed increased infarct size, decreased viable cardiomyocytes, and exacerbated cardiac dysfunction when compared with the wild-type mice. Western blot and electron micrography analysis also revealed that loss of IKKε induces excessive cardiomyocyte autophagy and reduced the expression of p-Akt and p-mTOR. Similar results were observed in IKKε siRNA H9c2 cells in vitro which were under starvation injury. Notably, the levels of p-Akt and p-mTOR can restore in IKKε rescued cells. In conclusion, our results indicated that IKKε protects cardiomyocyte survival by reduced autophagy following MI via regulation of the Akt/mTOR signaling pathway. Thus, our study suggests that IKKε might represent a potential therapeutic target for the treatment of MI
    corecore