9,103 research outputs found

    Entropic uncertainty relations in multidimensional position and momentum spaces

    Full text link
    Commutator-based entropic uncertainty relations in multidimensional position and momentum spaces are derived, twofold generalizing previous entropic uncertainty relations for one-mode states. The lower bound in the new relation is optimal, and the new entropic uncertainty relation implies the famous variance-based uncertainty principle for multimode states. The article concludes with an open conjecture

    Entanglement dynamics in critical random quantum Ising chain with perturbations

    Get PDF
    We simulate the entanglement dynamics in a critical random quantum Ising chain with generic perturbations using the time-evolving block decimation algorithm. Starting from a product state, we observe super-logarithmic growth of entanglement entropy with time. The numerical result is consistent with the analytical prediction of Vosk and Altman using a real-space renormalization group technique

    Computing quantum discord is NP-complete

    Full text link
    We study the computational complexity of quantum discord (a measure of quantum correlation beyond entanglement), and prove that computing quantum discord is NP-complete. Therefore, quantum discord is computationally intractable: the running time of any algorithm for computing quantum discord is believed to grow exponentially with the dimension of the Hilbert space so that computing quantum discord in a quantum system of moderate size is not possible in practice. As by-products, some entanglement measures (namely entanglement cost, entanglement of formation, relative entropy of entanglement, squashed entanglement, classical squashed entanglement, conditional entanglement of mutual information, and broadcast regularization of mutual information) and constrained Holevo capacity are NP-hard/NP-complete to compute. These complexity-theoretic results are directly applicable in common randomness distillation, quantum state merging, entanglement distillation, superdense coding, and quantum teleportation; they may offer significant insights into quantum information processing. Moreover, we prove the NP-completeness of two typical problems: linear optimization over classical states and detecting classical states in a convex set, providing evidence that working with classical states is generically computationally intractable.Comment: The (published) journal version http://iopscience.iop.org/1367-2630/16/3/033027/article is more updated than the arXiv versions, and is accompanied with a general scientific summary for non-specialists in computational complexit

    Eigenstate entanglement in the Sachdev-Ye-Kitaev model

    Get PDF
    We study the entanglement entropy of eigenstates (including the ground state) of the Sachdev-Ye-Kitaev model. We argue for a volume law, whose coefficient can be calculated analytically from the density of states. The coefficient depends on not only the energy density of the eigenstate but also the subsystem size. Very recent numerical results of Liu, Chen, and Balents confirm our analytical results
    • …
    corecore