12 research outputs found

    Emergent Incident Response for Unmanned Warehouses with Multi-agent Systems*

    Full text link
    Unmanned warehouses are an important part of logistics, and improving their operational efficiency can effectively enhance service efficiency. However, due to the complexity of unmanned warehouse systems and their susceptibility to errors, incidents may occur during their operation, most often in inbound and outbound operations, which can decrease operational efficiency. Hence it is crucial to to improve the response to such incidents. This paper proposes a collaborative optimization algorithm for emergent incident response based on Safe-MADDPG. To meet safety requirements during emergent incident response, we investigated the intrinsic hidden relationships between various factors. By obtaining constraint information of agents during the emergent incident response process and of the dynamic environment of unmanned warehouses on agents, the algorithm reduces safety risks and avoids the occurrence of chain accidents; this enables an unmanned system to complete emergent incident response tasks and achieve its optimization objectives: (1) minimizing the losses caused by emergent incidents; and (2) maximizing the operational efficiency of inbound and outbound operations during the response process. A series of experiments conducted in a simulated unmanned warehouse scenario demonstrate the effectiveness of the proposed method.Comment: 13 pages, 7 figure

    Recent advances in theory and technology of oil and gas geophysics

    Get PDF
    Oil and gas are important energy resources and industry materials. They are stored in pores and fractures of subsurface rocks over thousands of meters in depth, making the finding and distinguishing them to be a significant challenge. The geophysical methods, especially the seismic and well-logging methods, are the effective ways to identify the oil and gas reservoirs and are widely used in industry. Due to the complexity of near surface and subsurface structures of new exploration targets, the geophysical methods based on advanced computation methods and physical principles are continuously proposed to cope with the emerging challenges. Thus, some new advances in theory and technology of oil and gas geophysics are summarized in this editorial material, especially focusing on the geophysical data processing, numerical simulation technology, rock physics modeling, and reservoir characterization.Document Type: EditorialCited as: Wang, Y., Liu, Y., Zou, Z., Bao, Q., Zhang, F., Zong, Z. Recent advances in theory and technology of oil and gas geophysics. Advances in Geo-Energy Research, 2023, 9(1): 1-4. https://doi.org/10.46690/ager.2023.07.0

    Nuances are the Key: Unlocking ChatGPT to Find Failure-Inducing Tests with Differential Prompting

    Full text link
    Automatically detecting software failures is an important task and a longstanding challenge. It requires finding failure-inducing test cases whose test input can trigger the software's fault, and constructing an automated oracle to detect the software's incorrect behaviors. Recent advancement of large language models (LLMs) motivates us to study how far this challenge can be addressed by ChatGPT, a state-of-the-art LLM. Unfortunately, our study shows that ChatGPT has a low probability (28.8%) of finding correct failure-inducing test cases for buggy programs. A possible reason is that finding failure-inducing test cases requires analyzing the subtle code differences between a buggy program and its correct version. When these two versions have similar syntax, ChatGPT is weak at recognizing subtle code differences. Our insight is that ChatGPT's performance can be substantially enhanced when ChatGPT is guided to focus on the subtle code difference. We have an interesting observation that ChatGPT is effective in inferring the intended behaviors of a buggy program. The intended behavior can be leveraged to synthesize programs, in order to make the subtle code difference between a buggy program and its correct version (i.e., the synthesized program) explicit. Driven by this observation, we propose a novel approach that synergistically combines ChatGPT and differential testing to find failure-inducing test cases. We evaluate our approach on Quixbugs (a benchmark of buggy programs), and compare it with state-of-the-art baselines, including direct use of ChatGPT and Pynguin. The experimental result shows that our approach has a much higher probability (77.8%) of finding correct failure-inducing test cases, 2.7X as the best baseline.Comment: Accepted to the 38th IEEE/ACM International Conference on Automated Software Engineering (ASE 2023

    Research on Joint Extraction Method of Entity and Relation Triples Based on Hierarchical Cascade Labeling

    No full text
    As an important research field of artificial intelligence, knowledge graph develops rapidly, and triplet extraction is the key to the construction of a knowledge graph. The traditional pipeline extraction method will bring the error of entity recognition into the relationship extraction and affects the extraction effect. Besides, the traditional pipeline extraction method cannot solve the SEO (Single Entity Overlap) and EPO (Entity Pair Overlap) problems. Inspired by this, we compare the advantages and disadvantages of the mainstream methods of entity and relationship triples joint extraction, propose a new joint extraction method of entity relation triples based on a hierarchical cascade labeling model (named HCL model), and the HCL model is based on multi neural network cooperation. Further, we construct a balanced sampling Chinese dataset about the entity and relational triplet extraction which contains SEO and EPO. We carry out the experiments on the balanced data set, and the F1 value of the HCL model reaches 65.4% better than other baseline models

    DHA Protects Hepatocytes from Oxidative Injury through GPR120/ERK-Mediated Mitophagy

    No full text
    Oxidative stress occurs in a variety of clinical liver diseases and causes cellular damage and mitochondrial dysfunction. The clearance of damaged mitochondria by mitophagy may facilitate mitochondrial biogenesis and enhance cell survival. Although the supplementation of docosahexaenoic acid (DHA) has been recognized to relieve the symptoms of various liver diseases, the antioxidant effect of DHA in liver disease is still unclear. The purpose of our research was to investigate the antioxidant effect of DHA in the liver and the possible role of mitophagy in this. In vitro, H2O2-induced injury was caused in AML12 cells. The results showed that DHA repressed the level of reactive oxygen species (ROS) induced by H2O2 and stimulated the cellular antioxidation response. Most notably, DHA restored oxidative stress-impaired autophagic flux and promoted protective autophagy. In addition, PINK/Parkin-mediated mitophagy was activated by DHA in AML12 cells and alleviated mitochondrial dysfunction. The ERK1/2 signaling pathway was inhibited during oxidative stress but reactivated by DHA treatment. It was proven that the expression of ERK1/2 was involved in the regulation of mitophagy by the ERK1/2 inhibitor. We further proved these results in vivo. DHA effectively alleviated the liver oxidative damage caused by CCl4 and enhanced antioxidation capacity; intriguingly, autophagy was also activated. In summary, our data demonstrated that DHA protected hepatocytes from oxidative damage through GPR120/ERK-mediated mitophagy

    Salmonella Infection Causes Hyperglycemia for Decreased GLP-1 Content by Enteroendocrine L Cells Pyroptosis in Pigs

    No full text
    Inflammatory responses have been shown to induce hyperglycemia, yet the underlying mechanism is still largely unclear. GLP-1 is an important intestinal hormone for regulating glucose homeostasis; however, few studies have investigated the influence of digestive tract Salmonella infection on enteroendocrine L cell secretions. In this study, we established a model of Salmonella-infected piglets by oral gavage in order to analyze the effects of Salmonella infection on enteroendocrine L cell function. Furthermore, in vitro lipopolysaccharide (LPS) was administered to STC-1 cells to clarify its direct effect on GLP-1 secretion. The results showed that significantly increased blood glucose in the group of Salmonella-infected piglets was observed, and Salmonella infection decreased blood GLP-1 content. Then, ileal epithelium damage was observed by histological detection, and this was further verified by TUNEL staining. We identified activation of TLR signaling demonstrating up-regulated expressions of TLR4 and nuclear factor-kappa B (NF-ΚB). Furthermore, it was shown that Salmonella induced pyroptosis of enteroendocrine L cells and enhanced the secretion of IL-1β through augmenting gene and protein expressions of NOD-like receptor protein 3 (NLRP3), apoptosis-associated speck-like protein containing a carboxyl-terminal CARD (ASC), Caspase 1, and gasdermin D (GSDMD). Meanwhile, in vitro LPS treatment induced the pyroptosis of STC-1 cells and reduced the secretion of GLP-1. Altogether, the results demonstrated that Salmonella infection can reduce secretion of GLP-1 by inducing pyroptosis of intestinal L cells, which may eventually result in hyperglycemia. The results provided evidence for the cause of hyperglycemia induced by inflammation and shed new light on glucose homeostasis regulation

    Synthesis and Characterization of Schiff Base Polymers via Metal Coordination and Its Application in Infrared Stealth Coating

    No full text
    In order to reduce the infrared emissivity to meet the requirements of modern warfare for infrared stealth materials, we prepared the polymers containing Schiff base moieties using polyetheramine and 2,6-pyridinedicarboxaldehyde by solution polycondensation and coordinated with Ni2+, Cu2+, and Sm3+ ions to prepare organic coatings. The structure and the thermal and mechanical properties of the coatings were studied in detail. Meanwhile, the effect of the conductivity change of coordination polymers on infrared emissivity was studied systematically. The results showed the polymer coordinated with Sm3+ ions had the lowest energy band gap, which was 2.99 eV, and the best electrical conductivity of 3.54 × 10−4 S/cm compared with Ni2+ and Cu2+ coordination polymers. The infrared emissivity was the lowest in the 2–22 μm infrared waveband range, which reached 0.58, suggesting the polymers containing Schiff base moieties and their coordination polymers may have a great potential to be applied as infrared stealth materials in military applications

    Assessment of complications and short-term outcomes of percutaneous peritoneal dialysis catheter insertion by conventional or modified Seldinger technique

    No full text
    Objective To explore the efficacy and short-term complications of a modified technique to percutaneously insert a peritoneal dialysis catheter. Methods We reviewed the outcomes of 94 patients who underwent peritoneal dialysis catheterization between October 2017 and April 2020. Of these, 47 cases were placed by a conventional Seldinger technique, whereas 47 cases were placed by a modified technique based on the Seldinger method. The success rates of the catheter insertion and three-month postoperative complications were compared between these two groups. Results The catheter insertion success rates were comparable between the two groups: 93.6% in the conventional technique group and 97.9% in the modified technique group (p = 0.307). The incidence of postoperative catheter migration was lower using the modified technique (4.3%) than the conventional technique (18.3%) (p = 0.037). None of the patients in the modified technique group had postoperative dialysate leakage, whereas this occurred in 9.0% of patients in the conventional technique group (p = 0.036). There were no statistically significant differences in the incidence of postoperative bleeding, infection, or visceral damage between the two groups. Conclusions The modified Seldinger technique for percutaneous peritoneal dialysis catheter insertion reduced the short-term postoperative complications of catheter migration and dialysate leakage, with a comparable successful catheter insertion rate compared with the conventional Seldinger technique

    Integrated transcriptome and microbiome analyses of residual feed intake in ducks during high production period

    No full text
    ABSTRACT: Residual feed intake (RFI) is a crucial parameter for assessing the feeding efficiency of poultry. Minimizing RFI can enhance feed utilization and reduce costs. In this study, 315 healthy female ducks were individually housed in cages. Growth performance was monitored during the high laying period, from 290 to 325 d of age. The cecal transcriptome and microbiome of 12 ducks with high RFI and 12 with low residual feed intake (LRFI) were analyzed. Regarding growth performance, the LRFI group exhibited significantly lower RFI, feed conversion ratio (FCR), and feed intake (Fi) compared to the HRFI group (p 0.05). Microbiome analysis demonstrated that RFI impacted gut microbial abundance, particularly affecting metabolism and disease-related microorganisms such as Romboutsia, Enterococcus, and Megamonas funiformis. Transcriptome analysis revealed that varying RFI changed the expression of genes related to glucose metabolism and lipid metabolism, including APOA1, G6PC1, PCK1, and PLIN1. The integrated analysis indicated that host genes were closely linked to the microbiota and primarily function in lipid metabolism, which may enhance feeding efficiency by influencing metabolism and maintaining gut homeostasis

    Astrocytic trans-differentiation completes a multicellular paracrine feedback loop required for medulloblastoma tumor growth

    No full text
    The tumor microenvironment (TME) is critical for tumor progression. However, the establishment and function of the TME remain obscure because of its complex cellular composition. Using a mouse genetic system called mosaic analysis with double markers (MADMs), we delineated TME evolution at single-cell resolution in sonic hedgehog (SHH)-activated medulloblastomas that originate from unipotent granule neuron progenitors in the brain. First, we found that astrocytes within the TME(TuAstrocytes) were trans-differentiated from tumor granule neuron precursors (GNPs), which normally never differentiate into astrocytes. Second, we identified that TME-derived IGF1 promotes tumor progression. Third, we uncovered that insulin-like growth factor 1 (IGF1) is produced by tumor-associated microglia in response to interleukin-4 (IL-4) stimulation. Finally, we found that IL-4 is secreted by TuAstrocytes. Collectively, our studies reveal an evolutionary process that produces a multi-lateral network within the TME of medulloblastoma: a fraction of tumor cells trans-differentiate into TuAstrocytes, which, in turn, produce IL-4 that stimulates microglia to produce IGF1 to promote tumor progression
    corecore