15 research outputs found

    Identification of evolutionarily meaningful information within the mammalian RNA editing landscape

    Get PDF
    A large comparative genomic sequence study has determined the extent of conservation between RNA editing sites within the mammalian evolutionary tree. See related research by Pinto et al., http://genomebiology.com/2014/15/1/R

    Dark matter RNA: an intelligent scaffold for the dynamic regulation of the nuclear information landscape

    Get PDF
    Perhaps no other topic in contemporary genomics has inspired such diverse viewpoints as the 95+% of the genome, previously known as ā€œjunk DNA,ā€ that does not code for proteins. Here, we present a theory in which dark matter RNA plays a role in the generation of a landscape of spatial micro-domains coupled to the information signaling matrix of the nuclear landscape. Within and between these micro-domains, dark matter RNAs additionally function to tether RNA interacting proteins and complexes of many different types, and by doing so, allow for a higher performance of the various processes requiring them at ultra-fast rates. This improves signal to noise characteristics of RNA processing, trafficking, and epigenetic signaling, where competition and differential RNA binding among proteins drives the computational decisions inherent in regulatory events

    Prevalence of obesity in preschool Greek children, in relation to parental characteristics and region of residence

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of this retrospective cohort study was to record the prevalence of overweight and obesity in relation to parental education level, parental body mass index and region of residence, in preschool children in Greece.</p> <p>Methods</p> <p>A total of 2374 children (1218 males and 1156 females) aged 1ā€“5 years, stratified by parental educational level (Census 1999), were examined from 105 nurseries in five counties, from April 2003 to July 2004, Weight (kg) and height (cm) were obtained and BMI (kg/m<sup>2</sup>) was calculated. Both the US Centers for Disease Control (CDC) and the International Obesity Task Force (IOTF) methods were used to classify each child as "normal", "at risk of overweight" and "overweight". Parental demographic characteristics, such as age and educational level and parental anthropometrical data, such as stature and body weight, were also recorded with the use of a specifically designed questionnaire.</p> <p>Results</p> <p>The overall estimates of at risk of overweight and overweight using the CDC method was 31.9%, 10.6 percentage points higher than the IOTF estimate of 21.3% and this difference was significant (p < 0.001). Children with one obese parent had 91% greater odds for being overweight compared to those with no obese parent, while the likelihood for being overweight was 2.38 times greater for children with two obese parents in the multivariate model.</p> <p>Conclusion</p> <p>Both methods used to assess prevalence of obesity have demonstarted that a high percentage of the preschool children in our sample were overweight. Parental body mass index was also shown to be an obesity risk factor in very young children.</p

    The ADAR protein family

    No full text

    regulation of the nuclear information landscape

    No full text
    Dark matter RNA: an intelligent scaffold for the dynami

    Knock-in model of Dravet syndrome reveals a constitutive and conditional reduction in sodium current.

    No full text
    Hundreds of mutations in the SCN1A sodium channel gene confer a wide spectrum of epileptic disorders, requiring efficient model systems to study cellular mechanisms and identify potential therapeutic targets. We recently demonstrated that Drosophila knock-in flies carrying the K1270T SCN1A mutation known to cause a form of genetic epilepsy with febrile seizures plus (GEFS+) exhibit a heat-induced increase in sodium current activity and seizure phenotype. To determine whether different SCN1A mutations cause distinct phenotypes in Drosophila as they do in humans, this study focuses on a knock-in line carrying a mutation that causes a more severe seizure disorder termed Dravet syndrome (DS). Introduction of the DS SCN1A mutation (S1231R) into the Drosophila sodium channel gene para results in flies that exhibit spontaneous and heat-induced seizures with distinct characteristics and lower onset temperature than the GEFS+ flies. Electrophysiological studies of GABAergic interneurons in the brains of adult DS flies reveal, for the first time in an in vivo model system, that a missense DS mutation causes a constitutive and conditional reduction in sodium current activity and repetitive firing. In addition, feeding with the serotonin precursor 5-HTP suppresses heat-induced seizures in DS but not GEFS+ flies. The distinct alterations of sodium currents in DS and GEFS+ GABAergic interneurons demonstrate that both loss- and gain-of-function alterations in sodium currents are capable of causing reduced repetitive firing and seizure phenotypes. The mutation-specific effects of 5-HTP on heat-induced seizures suggest the serotonin pathway as a potential therapeutic target for DS

    Knock-in model of Dravet syndrome reveals a constitutive and conditional reduction in sodium current

    No full text
    Hundreds of mutations in the SCN1A sodium channel gene confer a wide spectrum of epileptic disorders, requiring efficient model systems to study cellular mechanisms and identify potential therapeutic targets. We recently demonstrated that Drosophila knock-in flies carrying the K1270T SCN1A mutation known to cause a form of genetic epilepsy with febrile seizures plus (GEFS+) exhibit a heat-induced increase in sodium current activity and seizure phenotype. To determine whether different SCN1A mutations cause distinct phenotypes in Drosophila as they do in humans, this study focuses on a knock-in line carrying a mutation that causes a more severe seizure disorder termed Dravet syndrome (DS). Introduction of the DS SCN1A mutation (S1231R) into the Drosophila sodium channel gene para results in flies that exhibit spontaneous and heat-induced seizures with distinct characteristics and lower onset temperature than the GEFS+ flies. Electrophysiological studies of GABAergic interneurons in the brains of adult DS flies reveal, for the first time in an in vivo model system, that a missense DS mutation causes a constitutive and conditional reduction in sodium current activity and repetitive firing. In addition, feeding with the serotonin precursor 5-HTP suppresses heat-induced seizures in DS but not GEFS+ flies. The distinct alterations of sodium currents in DS and GEFS+ GABAergic interneurons demonstrate that both loss- and gain-of-function alterations in sodium currents are capable of causing reduced repetitive firing and seizure phenotypes. The mutation-specific effects of 5-HTP on heat-induced seizures suggest the serotonin pathway as a potential therapeutic target for DS
    corecore