21 research outputs found

    Drepmel—A Multi-Omics Melanoma Drug Repurposing Resource for Prioritizing Drug Combinations and Understanding Tumor Microenvironment

    No full text
    Although substantial progress has been made in treating patients with advanced melanoma with targeted and immuno-therapies, de novo and acquired resistance is commonplace. After treatment failure, therapeutic options are very limited and novel strategies are urgently needed. Combination therapies are often more effective than single agents and are now widely used in clinical practice. Thus, there is a strong need for a comprehensive computational resource to define rational combination therapies. We developed a Shiny app, DRepMel to provide rational combination treatment predictions for melanoma patients from seventy-three thousand combinations based on a multi-omics drug repurposing computational approach using whole exome sequencing and RNA-seq data in bulk samples from two independent patient cohorts. DRepMel provides robust predictions as a resource and also identifies potential treatment effects on the tumor microenvironment (TME) using single-cell RNA-seq data from melanoma patients. Availability: DRepMel is accessible online

    Activity-Based Proteomics Reveals Heterogeneous Kinome and ATP-Binding Proteome Responses to MEK Inhibition in KRAS Mutant Lung Cancer

    No full text
    One way cancer cells can escape from targeted agents is through their ability to evade drug effects by rapidly rewiring signaling networks. Many protein classes, such as kinases and metabolic enzymes, are regulated by ATP binding and hydrolysis. We hypothesized that a system-level profiling of drug-induced alterations in ATP-binding proteomes could offer novel insights into adaptive responses. Here, we mapped global ATP-binding proteomes perturbed by two clinical MEK inhibitors, AZD6244 and MEK162, in KRAS mutant lung cancer cells as a model system harnessing a desthiobiotin-ATP probe coupled with LC-MS/MS. We observed strikingly unique ATP-binding proteome responses to MEK inhibition, which revealed heterogeneous drug-induced pathway signatures in each cell line. We also identified diverse kinome responses, indicating each cell adapts to MEK inhibition in unique ways. Despite the heterogeneity of kinome responses, decreased probe labeling of mitotic kinases and an increase of kinases linked to autophagy were identified to be common responses. Taken together, our study revealed a diversity of adaptive ATP-binding proteome and kinome responses to MEK inhibition in KRAS mutant lung cancer cells, and our study further demonstrated the utility of our approach to identify potential candidates of targetable ATP-binding enzymes involved in adaptive resistance and to develop rational drug combinations

    Investigation of exomic variants associated with overall survival in ovarian cancer

    No full text
    Background: While numerous susceptibility loci for epithelial ovarian cancer (EOC) have been identified, few associations have been reported with overall survival. In the absence of common prognostic genetic markers, we hypothesize that rare coding variants may be associated with overall EOC survival and assessed their contribution in two exome-based genotyping projects of the Ovarian Cancer Association Consortium (OCAC). Methods: The primary patient set (Set 1) included 14 independentEOCstudies (4,293 patients) and 227,892 variants, and a secondary patient set (Set 2) included six additional EOC studies (1,744 patients) and 114,620 variants. Because power to detect rare variants individually is reduced, gene-level tests were conducted. Sets were analyzed separately at individual variants and by gene, and then combined with meta-analyses (73,203 variants and 13,163 genes overlapped). Results: No individual variant reached genome-wide statistical significance. A SNP previously implicated to be associated with EOC risk and, to a lesser extent, survival, rs8170, showed the strongest evidence of association with survival and similar effect size estimates across sets (P=1.1E-6,HR=1.17,HR= 1.14). Rare variants in ATG2B, an autophagy gene important for apoptosis, were significantly associated with survival after multiple testing correction (P = 1.1E-6; P = 0.01). Conclusions: Common variant rs8170 and rare variants in ATG2B may be associated with EOC overall survival, although further study is needed. Impact: This study represents the first exome-wide association study of EOCsurvival to include rare variant analyses, and suggests that complementary single variant and gene-level analyses in large studies are needed to identify rare variants that warrant follow-up study. Cancer Epidemiol Biomarkers Prev; 25(3); 446-54
    corecore