558 research outputs found

    Variable selection for the multicategory SVM via adaptive sup-norm regularization

    Get PDF
    The Support Vector Machine (SVM) is a popular classification paradigm in machine learning and has achieved great success in real applications. However, the standard SVM can not select variables automatically and therefore its solution typically utilizes all the input variables without discrimination. This makes it difficult to identify important predictor variables, which is often one of the primary goals in data analysis. In this paper, we propose two novel types of regularization in the context of the multicategory SVM (MSVM) for simultaneous classification and variable selection. The MSVM generally requires estimation of multiple discriminating functions and applies the argmax rule for prediction. For each individual variable, we propose to characterize its importance by the supnorm of its coefficient vector associated with different functions, and then minimize the MSVM hinge loss function subject to a penalty on the sum of supnorms. To further improve the supnorm penalty, we propose the adaptive regularization, which allows different weights imposed on different variables according to their relative importance. Both types of regularization automate variable selection in the process of building classifiers, and lead to sparse multi-classifiers with enhanced interpretability and improved accuracy, especially for high dimensional low sample size data. One big advantage of the supnorm penalty is its easy implementation via standard linear programming. Several simulated examples and one real gene data analysis demonstrate the outstanding performance of the adaptive supnorm penalty in various data settings.Comment: Published in at http://dx.doi.org/10.1214/08-EJS122 the Electronic Journal of Statistics (http://www.i-journals.org/ejs/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Variable selection in quantile regression

    Get PDF
    Abstract: After its inception in Koenker and Bassett (1978), quantile regression has become an important and widely used technique to study the whole conditional distribution of a response variable and grown into an important tool of applied statistics over the last three decades. In this work, we focus on the variable selection aspect of penalized quantile regression. Under some mild conditions, we demonstrate the oracle properties of the SCAD and adaptive-LASSO penalized quantile regressions. For the SCAD penalty, despite its good asymptotic properties, the corresponding optimization problem is non-convex and, as a result, much harder to solve. In this work, we take advantage of the decomposition of the SCAD penalty function as the difference of two convex functions and propose to solve the corresponding optimization using the Difference Convex Algorithm (DCA)

    An acoustic metamaterial lens for acoustic point-to-point communication in air

    Full text link
    Acoustic metamaterials have become a novel and effective way to control sound waves and design acoustic devices. In this study, we design a 3D acoustic metamaterial lens (AML) to achieve point-to-point acoustic communication in air: any acoustic source (i.e. a speaker) in air enclosed by such an AML can produce an acoustic image where the acoustic wave is focused (i.e. the field intensity is at a maximum, and the listener can receive the information), while the acoustic field at other spatial positions is low enough that listeners can hear almost nothing. Unlike a conventional elliptical reflective mirror, the acoustic source can be moved around inside our proposed AML. Numerical simulations are given to verify the performance of the proposed AML

    Learning to Auto Weight: Entirely Data-driven and Highly Efficient Weighting Framework

    Full text link
    Example weighting algorithm is an effective solution to the training bias problem, however, most previous typical methods are usually limited to human knowledge and require laborious tuning of hyperparameters. In this paper, we propose a novel example weighting framework called Learning to Auto Weight (LAW). The proposed framework finds step-dependent weighting policies adaptively, and can be jointly trained with target networks without any assumptions or prior knowledge about the dataset. It consists of three key components: Stage-based Searching Strategy (3SM) is adopted to shrink the huge searching space in a complete training process; Duplicate Network Reward (DNR) gives more accurate supervision by removing randomness during the searching process; Full Data Update (FDU) further improves the updating efficiency. Experimental results demonstrate the superiority of weighting policy explored by LAW over standard training pipeline. Compared with baselines, LAW can find a better weighting schedule which achieves much more superior accuracy on both biased CIFAR and ImageNet.Comment: Accepted by AAAI 202
    • …
    corecore