1,743 research outputs found

    The Ξ½\nuTHDM with the Inverse Seesaw Mechanisms

    Full text link
    In this paper, we combine the Ξ½\nu-Two-Higgs-Doublet-Model (Ξ½\nuTHDM) with the inverse seesaw mechanisms. In this model, the Yukawa couplings involving the sterile neutrinos and the exotic Higgs bosons can be of order one in the case of a large tan⁑β\tan \beta. We calculated the corrections to the Z-resonance parameters RliR_{l_i}, AliA_{l_i}, NΞ½N_{\nu}, together with the l1β†’l2Ξ³l_1 \rightarrow l_2 \gamma branching ratios, and the muon anomalous gβˆ’2g-2. Compared with the current bounds and plans for the future colliders, we find that the corrections to the electroweak parameters can be contrained or discovered in much of the parameter space

    Invisible Higgs Decay at the LHeC

    Full text link
    The possibility that the 125 GeV Higgs boson may decay into invisible non-standard-model (non-SM) particles is theoretically and phenomenologically intriguing. In this letter we investigate the sensitivity of the Large Hadron Electron Collider (LHeC) to an invisibly decaying Higgs, in its proposed high luminosity running mode. We focus on the neutral current Higgs production channel which offers more kinematical handles than its charged current counterpart. The signal contains one electron, one jet and large missing energy. With a cut-based parton level analysis, we estimate that if the hZZhZZ coupling is at its standard model (SM) value, then assuming an integrated luminosity of 1\,\mbox{ab}^{-1} the LHeC with the proposed 60 GeV electron beam (with βˆ’0.9-0.9 polarization) and 7 TeV proton beam is capable of probing Br(hβ†’E ⁣ ⁣ ⁣ ⁣/T)=6%\mathrm{Br}(h\rightarrow E\!\!\!\!/_T)=6\% at 2Οƒ2\sigma level. Good lepton veto performance (especially hadronic Ο„\tau veto) in the forward region is crucial to the suppression of the dominant WjeWje background. We also explicitly point out the important role that may be played by the LHeC in probing a wide class of exotic Higgs decay processes and emphasize the general function of lepton-hadron colliders in precision study of new resonances after their discovery in hadron-hadron collisions.Comment: 6 pages, 3 figures. Description of the backgrounds, analysis and results is simplified. Results unchanged with respect to v2. References update

    Exotic Higgs Decay h→ϕϕ→4bh\rightarrow\phi\phi\rightarrow 4b at the LHeC

    Full text link
    We study the exotic decay of the 125 GeV Higgs boson (hh) into a pair of light spin-0 particles (Ο•\phi) which subsequently decays and results in a 4b4b final state. This decay mode is well motivated in the Next to Minimal Supersymmetric Standard Model (NMSSM) and extended Higgs sector models. Instead of searching at the Large Hadron Collider (LHC) and the High Luminosity Large Hadron Collider (HL-LHC) which are beset by large Standard Model (SM) backgrounds, we investigate this decay channel at the much cleaner Large Hadron Electron Collider (LHeC). With some simple selection cuts this channel becomes nearly free of background at this epep machine, in stark contrast with the situation at the (HL-)LHC. With a parton level analysis we show that for the Ο•\phi mass range [20,60]GeV[20,60]GeV, with 100 fbβˆ’1100\,fb^{-1} luminosity the LHeC is generally capable of constraining C4b2≑κV2Γ—Br(h→ϕϕ)Γ—Br2(Ο•β†’bbΛ‰)C_{4b}^2\equiv\kappa_{V}^2\times\text{Br}(h\rightarrow\phi\phi)\times\text{Br}^2(\phi\rightarrow b\bar{b}) (ΞΊV\kappa_{V} denotes the hVV(V=W,Z)hVV(V=W,Z) coupling strength relative to the SM value) to a few percent level (95%95\% CLs). With 1 abβˆ’11\,ab^{-1} luminosity C4b2C_{4b}^2 at a few per mille level can be probed. These sensitivities are much better than the HL-LHC performance and demonstrate the important role expected to be played by the LHeC in probing exotic Higgs decay processes, in addition to the already proposed invisible Higgs decay channel.Comment: 10 pages, 5 figures. Version accepted by EPJC. Tables and figures updated after correcting a mistake in signal event generation. Results essentially unchange

    Identification and target prediction of miRNAs specifically expressed in rat neural tissue

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MicroRNAs (miRNAs) are a large group of RNAs that play important roles in regulating gene expression and protein translation. Several studies have indicated that some miRNAs are specifically expressed in human, mouse and zebrafish tissues. For example, miR-1 and miR-133 are specifically expressed in muscles. Tissue-specific miRNAs may have particular functions. Although previous studies have reported the presence of human, mouse and zebrafish tissue-specific miRNAs, there have been no detailed reports of rat tissue-specific miRNAs. In this study, Home-made rat miRNA microarrays which established in our previous study were used to investigate rat neural tissue-specific miRNAs, and mapped their target genes in rat tissues. This study will provide information for the functional analysis of these miRNAs.</p> <p>Results</p> <p>In order to obtain as complete a picture of specific miRNA expression in rat neural tissues as possible, customized miRNA microarrays with 152 selected miRNAs from miRBase were used to detect miRNA expression in 14 rat tissues. After a general clustering analysis, 14 rat tissues could be clearly classified into neural and non-neural tissues based on the obtained expression profiles with p values < 0.05. The results indicated that the miRNA profiles were different in neural and non-neural tissues. In total, we found 30 miRNAs that were specifically expressed in neural tissues. For example, miR-199a was specifically expressed in neural tissues. Of these, the expression patterns of four miRNAs were comparable with those of Landgraf et al., Bak et al., and Kapsimani et al. Thirty neural tissue-specific miRNAs were chosen to predict target genes. A total of 1,475 target mRNA were predicted based on the intersection of three public databases, and target mRNA's pathway, function, and regulatory network analysis were performed. We focused on target enrichments of the dorsal root ganglion (DRG) and olfactory bulb. There were four Gene Ontology (GO) functions and five KEGG pathways significantly enriched in DRG. Only one GO function was significantly enriched in the olfactory bulb. These targets are all predictions and have not been experimentally validated.</p> <p>Conclusion</p> <p>Our work provides a global view of rat neural tissue-specific miRNA profiles and a target map of miRNAs, which is expected to contribute to future investigations of miRNA regulatory mechanisms in neural systems.</p
    • …
    corecore