25 research outputs found
Revealing the Electrophysiological Correlates of Working Memory-Load Effects in Symmetry Span Task With HHT Method
Complex span task is one of the commonly used cognitive tasks to evaluate an individual’s working memory capacity (WMC). It is a dual task consisting of a distractor subtask and a memory subtask. Though multiple studies have utilized complex span tasks, the electrophysiological correlates underlying the encoding and retrieval processes in working memory span task remain uninvestigated. One previous study that assessed electroencephalographic (EEG) measures utilizing complex span task found no significant difference between its working memory loads, a typical index observed in other working memory tasks (e.g., n-back task and digital span task). The following design constructs of the paradigm might have been the reason. (1) The fixed-time limit of the distractor subtask may have hindered the assessment of individual WMC precisely. (2) Employing a linear-system-favoring EEG data analysis method for a non-linear system such as the human brain. In the current study, the participants perform the Raven Advanced Progressive Matrices (RAMP) task on 1 day and the symmetry span (Sspan) task on the other. Prior to the formal Sspan task, the participants were instructed to judge 15 simple symmetry questions as quickly as possible. A participant-specific time-limit is chartered from these symmetry questions. The current study utilizes the Sspan task sequential to a distractor subtask. Instead of the fixed time-limit exercised in the previous study, the distractor subtask of the current study was equipped with the participant-specific time-limit obtained from the symmetry questions. This could provide a precise measure of individual WMC. This study investigates if the complex span task resonates EEG patterns similar to the other working memory tasks in terms of working memory-load by utilizing ensemble empirical mode decomposition (EEMD) of Hilbert-Huang transform (HHT). Prior expectations were to observe a decrement in the P300 component of event-related mode (ERM) and a decrement in the power of alpha and beta band frequency with increasing working memory-load. We observed a significantly higher P300 amplitude for the low-load condition compared to the high-load condition over the circumscribed brain network across F4 and C4 electrodes. Time–frequency analysis revealed a significant difference between the high- and low-load conditions at alpha and beta band over the frontal, central, and parietal channels. The results from our study demonstrate precise differences in EEG data pertaining to varied memory-load differences in the complex span task. Thus, assessing complex span tasks with the HHT-based analysis may aid in achieving a better signal to noise ratio and effect size for the results in working memory EEG studies
Evaluation of the In Vivo
Background. Radix Paeoniae Rubra (Chi Shao) contains several phytochemicals with hypoglycemic actions. Current research aims to explore potential insulinotropic effects and long-term therapeutic efficacy of such herb against type 2 diabetes. Methods. Composition analysis for the ethanol extract (PRExt) was executed by high performance liquid chromatography. Polyphenol-enriched fraction was characterized by high pressure size exclusion chromatography. Multiple cell platforms were employed to evaluate hypoglycemic bioactivities. In animal experiments, blood glucose, the homeostasis model assessment (HOMA)-index assessment, glucose tolerance test, and in vivo glucose uptake were all measured. Additional effects of PRExt on obesity and hepatic steatosis were evaluated by serum and histological analysis. Results. PRExt provides multiple hypoglycemic effects including the enhancement of glucose-mediated insulin secretion. Pentagalloylglucose and polyphenol-enriched fraction are two insulinotropic constituents. Moreover, PRExt intraperitoneal injection causes acute hypoglycemic effects on fasted db/db mice. Oral administration of PRExt (200 mg/kg b.w.) gradually reduces blood glucose in db/db mice to the level similar to that in C57J/B6 mice after 30 days. The improvement of glucose intolerance, HOMA-index, and in vivo glucose uptake is evident in addition to the weight loss effect and attenuation of hepatic steatosis. Conclusion. PRExt is an effective antidiabetic herbal extract with multiple hypoglycemic bioactivities
Robust estimation of bacterial cell count from optical density
Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data
Finishing the euchromatic sequence of the human genome
The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
Defining the causes of sporadic Parkinson's disease in the global Parkinson's genetics program (GP2)
The Global Parkinson’s Genetics Program (GP2) will genotype over 150,000 participants from around the world, and integrate genetic and clinical data for use in large-scale analyses to dramatically expand our understanding of the genetic architecture of PD. This report details the workflow for cohort integration into the complex arm of GP2, and together with our outline of the monogenic hub in a companion paper, provides a generalizable blueprint for establishing large scale collaborative research consortia
The global retinoblastoma outcome study : a prospective, cluster-based analysis of 4064 patients from 149 countries
DATA SHARING : The study data will become available online once all analyses are complete.BACKGROUND : Retinoblastoma is the most common intraocular cancer worldwide. There is some evidence to suggest that major differences exist in treatment outcomes for children with retinoblastoma from different regions, but these differences have not been assessed on a global scale. We aimed to report 3-year outcomes for children with retinoblastoma globally and to investigate factors associated with survival. METHODS : We did a prospective cluster-based analysis of treatment-naive patients with retinoblastoma who were diagnosed between Jan 1, 2017, and Dec 31, 2017, then treated and followed up for 3 years. Patients were recruited from 260 specialised treatment centres worldwide. Data were obtained from participating centres on primary and additional treatments, duration of follow-up, metastasis, eye globe salvage, and survival outcome. We analysed time to death and time to enucleation with Cox regression models. FINDINGS : The cohort included 4064 children from 149 countries. The median age at diagnosis was 23·2 months (IQR 11·0–36·5). Extraocular tumour spread (cT4 of the cTNMH classification) at diagnosis was reported in five (0·8%) of 636 children from high-income countries, 55 (5·4%) of 1027 children from upper-middle-income countries, 342 (19·7%) of 1738 children from lower-middle-income countries, and 196 (42·9%) of 457 children from low-income countries. Enucleation surgery was available for all children and intravenous chemotherapy was available for 4014 (98·8%) of 4064 children. The 3-year survival rate was 99·5% (95% CI 98·8–100·0) for children from high-income countries, 91·2% (89·5–93·0) for children from upper-middle-income countries, 80·3% (78·3–82·3) for children from lower-middle-income countries, and 57·3% (52·1-63·0) for children from low-income countries. On analysis, independent factors for worse survival were residence in low-income countries compared to high-income countries (hazard ratio 16·67; 95% CI 4·76–50·00), cT4 advanced tumour compared to cT1 (8·98; 4·44–18·18), and older age at diagnosis in children up to 3 years (1·38 per year; 1·23–1·56). For children aged 3–7 years, the mortality risk decreased slightly (p=0·0104 for the change in slope). INTERPRETATION : This study, estimated to include approximately half of all new retinoblastoma cases worldwide in 2017, shows profound inequity in survival of children depending on the national income level of their country of residence. In high-income countries, death from retinoblastoma is rare, whereas in low-income countries estimated 3-year survival is just over 50%. Although essential treatments are available in nearly all countries, early diagnosis and treatment in low-income countries are key to improving survival outcomes.The Queen Elizabeth Diamond Jubilee Trust and the Wellcome Trust.https://www.thelancet.com/journals/langlo/homeam2023Paediatrics and Child Healt
Multi-ancestry genome-wide association meta-analysis of Parkinson?s disease
Although over 90 independent risk variants have been identified for Parkinson’s disease using genome-wide association studies, most studies have been performed in just one population at a time. Here we performed a large-scale multi-ancestry meta-analysis of Parkinson’s disease with 49,049 cases, 18,785 proxy cases and 2,458,063 controls including individuals of European, East Asian, Latin American and African ancestry. In a meta-analysis, we identified 78 independent genome-wide significant loci, including 12 potentially novel loci (MTF2, PIK3CA, ADD1, SYBU, IRS2, USP8, PIGL, FASN, MYLK2, USP25, EP300 and PPP6R2) and fine-mapped 6 putative causal variants at 6 known PD loci. By combining our results with publicly available eQTL data, we identified 25 putative risk genes in these novel loci whose expression is associated with PD risk. This work lays the groundwork for future efforts aimed at identifying PD loci in non-European populations
Decoy peptides effectively inhibit the binding of SARS-CoV-2 to ACE2 on oral epithelial cells
The entry of SARS-CoV-2 into host cells involves the interaction between the viral spike protein and the human angiotensin-converting enzyme 2 (ACE2) receptor. Given that the spike protein evolves rapidly to evade host immunity, therapeutics that block ACE2 accessibility, such as spike decoys, could serve as an alternative strategy for attenuating viral infection. Here, we constructed a drug screening platform based on oral epithelial cells to rapidly identify peptides or compounds capable of blocking the spike-ACE2 interaction. We engineered short decoy peptides, 8 to 14 amino acids in length, using the spike protein's receptor-binding motif (RBM) and demonstrated that these peptides can effectively inhibit virus attachment to host cells. Additionally, we discovered that diminazene aceturate (DIZE), an ACE2 activator, similarly inhibited virus binding. Our research thus validates the potential of decoy peptides as a new therapeutic strategy against SARS-CoV-2 infections, opening avenues for further development and study
Disruption of ETV6 leads to TWIST1-dependent progression and resistance to epidermal growth factor receptor tyrosine kinase inhibitors in prostate cancer
Abstract Background ETS variant gene 6 (ETV6) is a putative tumor suppressor and repressed by epidermal growth factor receptor (EGFR) signaling in prostate cancer. Since EGFR antagonists seem ineffective in castration-resistant prostate cancer (CRPC), we aim to study the role of ETV6 in the development of drug resistance. Methods Etv6 target gene was validated by ChIP and promoter reporter assays. Correlation of ETV6 and TWIST1 was analyzed in human clinical datasets and tissue samples. Migration, invasion, and metastasis assays were used to measure the cellular responses after perturbation of ETV6 -TWIST1 axis. Proliferation and tumor growth in xenograft model were performed to evaluate the drug sensitivities of EGFR-tyrosine kinase inhibitors (TKIs). Results ETV6 inhibits TWIST1 expression and disruption of ETV6 promotes TWIST1-dependent malignant phenotypes. Importantly, ETV6 is required to the anti-proliferation effects of EGFR-TKIs, partly due to the inhibitory function of ETV6 on TWIST1. We also found that EGFR-RAS signaling is tightly controlled by ETV6, supporting its role in TKI sensitivity. Conclusions Our study demonstrates that disruption of ETV6 contributes to EGFR-TKI resistance, which is likely due to derepression of TWIST1 and activation of EGFR-RAS signaling. Our results implicate ETV6 as a potential marker for predicting efficacy of an EGFR-targeted anticancer approach. Combination treatment of TWIST1 inhibitors could sensitize the anti-proliferation effects of EGFR-TKIs
Association between inflammatory bowel disease and bullous pemphigoid: a population-based case–control study
Abstract The coexistence of inflammatory bowel disease (IBD) and bullous pemphigoid (BP) has been reported. No large-scale study to date has explored the relationship between these diseases. This population-based case-control study examined the association between IBD and BP by using a nationwide database. A total of 5,263 BP patients and 21,052 age- and gender-, hospital visit number-matched controls were identified in the National Health Insurance Research Database of Taiwan (1997–2013). Demographic characteristics and comorbidities including IBD were compared. Logistic regression was conducted to examine the predicting factors for BP. The mean age at diagnosis was 74.88 years and 54.3% of subjects were male. BP patients tended to have more cardiovascular risk factors, autoimmune and neurologic comorbidities, and hematologic cancers than matched controls. There were 20 cases of IBD (0.38%), mostly ulcerative colitis (N = 17, 0.32%) among BP patients, compared to 33 IBD cases (0.16%) among controls (p < 0.001). Ulcerative colitis was found to be significantly associated with BP [adjusted odds ratio (OR) 3.60, 95% confidence interval (CI) 1.91–6.77, p < 0.001] on multivariate analysis. Treatment for IBD was not associated with BP development. Information about diet, lifestyle, alcohol consumption, and smoking habit was not available. We concluded that UC is independently associated with BP