617 research outputs found

    A multicentre study on the clinical characteristics of newborns infected with coronavirus disease 2019 during the omicron wave

    Get PDF
    ObjectiveTo investigate the clinical characteristics and outcomes of newborns infected with coronavirus disease 2019 (COVID-19) during the Omicron wave.MethodsFrom December 1, 2022, to January 4, 2023, clinical data were collected from neonates with COVID-19 who were admitted to 10 hospitals in Foshan City, China. Their epidemiological histories, clinical manifestations and outcomes were analysed. The neonates were divided into symptomatic and asymptomatic groups. The t test or χ2 test was used for comparisons between groups.ResultsA total of 286 children were diagnosed, including 166 males, 120 females, 273 full-term infants and 13 premature infants. They were 5.5 (0–30) days old on average when they were admitted to the hospital. These children had contact with patients who tested positive for COVID-19 and were infected through horizontal transmission. This study included 33 asymptomatic and 253 symptomatic patients, among whom 143 were diagnosed with upper respiratory tract infections and 110 were diagnosed with pneumonia. There were no severe or critical patients. Fever (220 patients) was the most common clinical manifestation, with a duration of 1.1 (1–6) days. The next most common clinical manifestations were cough with nasal congestion or runny nose (4 patients), cough (34 patients), poor appetite (7 patients), shortness of breath (15 patients), and poor general status (1 patient). There were no significant abnormalities in routine blood tests among the neonates infected with COVID-19 except for mononucleosis. However, compared with the asymptomatic group, in the symptomatic group, the leukocyte and neutrophil granulocyte counts were significantly decreased, and the monocyte count was significantly increased. C-reactive protein (CRP) levels were significantly increased (≥10 mg/L) in 9 patients. Myocardial enzyme, liver function, kidney function and other tests showed no obvious abnormalities.ConclusionsIn this study, neonates infected with the Omicron variant were asymptomatic or had mild disease. Symptomatic patients had lower leucocyte and neutrophil levels than asymptomatic patients

    Measurements of branching fractions for inclusive K0~/K0 and K*(892)+- decays of neutral and charged D mesons

    Get PDF
    Using the data sample of about 33 pb-1 collected at and around 3.773 GeV with the BES-II detector at the BEPC collider, we have studied inclusive K0~/K0 and K*(892)+- decays of D0 and D+ mesons. The branching fractions for the inclusive K0~/K0 and K*(892)- decays are measured to be BF(D0 to K0~/K0 X)=(47.6+-4.8+-3.0)%, BF(D+ to K0~/K0 X)=(60.5+-5.5+-3.3)%, BF(D0 to K*- X)=(15.3+- 8.3+- 1.9)% and BF(D+ to K*- X)=(5.7+- 5.2+- 0.7)%. The upper limits of the branching fractions for the inclusive K*(892)+ decays are set to be BF(D0 to K*+ X)<3.6% and BF(D+ to K*+ X) <20.3% at 90% confidence level

    FAST observations of an extremely active episode of FRB 20201124A: IV. Spin Period Search

    Full text link
    We report the properties of more than 800 bursts detected from the repeating fast radio burst (FRB) source FRB 20201124A with the Five-hundred-meter Aperture Spherical radio telescope (FAST) during an extremely active episode on UTC September 25th-28th, 2021 in a series of four papers. In this fourth paper of the series, we present a systematic search of the spin period and linear acceleration of the source object from both 996 individual pulse peaks and the dedispersed time series. No credible spin period was found from this data set. We rule out the presence of significant periodicity in the range between 1 ms to 100 s with a pulse duty cycle <0.49±0.08< 0.49\pm0.08 (when the profile is defined by a von-Mises function, not a boxcar function) and linear acceleration up to 300300 m s2^{-2} in each of the four one-hour observing sessions, and up to 0.60.6 m s2^{-2} in all 4 days. These searches contest theoretical scenarios involving a 1 ms to 100 s isolated magnetar/pulsar with surface magnetic field <1015<10^{15} G and a small duty cycle (such as in a polar-cap emission mode) or a pulsar with a companion star or black hole up to 100 M_{\rm \odot} and Pb>10P_b>10 hours. We also perform a periodicity search of the fine structures and identify 53 unrelated millisecond-timescale "periods" in multi-components with the highest significance of 3.9 σ\sigma. The "periods" recovered from the fine structures are neither consistent nor harmonically related. Thus they are not likely to come from a spin period. We caution against claiming spin periodicity with significance below \sim 4 σ\sigma with multi-components from one-off FRBs. We discuss the implications of our results and the possible connections between FRB multi-components and pulsar micro-structures.Comment: Accepted by Research in Astronomy and Astrophysics (RAA

    Measurements of J/psi Decays into 2(pi+pi-)eta and 3(pi+pi-)eta

    Full text link
    Based on a sample of 5.8X 10^7 J/psi events taken with the BESII detector, the branching fractions of J/psi--> 2(pi+pi-)eta and J/psi-->3(pi+pi-)eta are measured for the first time to be (2.26+-0.08+-0.27)X10^{-3} and (7.24+-0.96+-1.11)X10^{-4}, respectively.Comment: 11 pages, 6 figure

    BESII Detector Simulation

    Full text link
    A Monte Carlo program based on Geant3 has been developed for BESII detector simulation. The organization of the program is outlined, and the digitization procedure for simulating the response of various sub-detectors is described. Comparisons with data show that the performance of the program is generally satisfactory.Comment: 17 pages, 14 figures, uses elsart.cls, to be submitted to NIM

    Measurement of branching fractions for the inclusive Cabibbo-favored ~K*0(892) and Cabibbo-suppressed K*0(892) decays of neutral and charged D mesons

    Full text link
    The branching fractions for the inclusive Cabibbo-favored ~K*0 and Cabibbo-suppressed K*0 decays of D mesons are measured based on a data sample of 33 pb-1 collected at and around the center-of-mass energy of 3.773 GeV with the BES-II detector at the BEPC collider. The branching fractions for the decays D+(0) -> ~K*0(892)X and D0 -> K*0(892)X are determined to be BF(D0 -> \~K*0X) = (8.7 +/- 4.0 +/- 1.2)%, BF(D+ -> ~K*0X) = (23.2 +/- 4.5 +/- 3.0)% and BF(D0 -> K*0X) = (2.8 +/- 1.2 +/- 0.4)%. An upper limit on the branching fraction at 90% C.L. for the decay D+ -> K*0(892)X is set to be BF(D+ -> K*0X) < 6.6%

    Study of J/ψωK+KJ/\psi \to \omega K^+K^-

    Get PDF
    New data are presented on J/ψωK+KJ/\psi \to \omega K^+K^- from a sample of 58M J/ψJ/\psi events in the upgraded BES II detector at the BEPC. There is a conspicuous signal for f0(1710)K+Kf_0(1710) \to K^+K^- and a peak at higher mass which may be fitted with f2(2150)KKˉf_2(2150) \to K\bar K. From a combined analysis with ωπ+π\omega \pi ^+ \pi ^- data, the branching ratio BR(f0(1710)ππ)/BR(f0(1710)KKˉ)BR(f_0(1710)\to\pi\pi)/BR(f_0(1710) \to K\bar K) is <0.11< 0.11 at the 95% confidence level.Comment: 11 pages, 5 figures. Submitted to Phys. Lett.

    Atypical radio pulsations from magnetar SGR 1935+2154

    Full text link
    Magnetars are neutron stars with extremely strong magnetic fields, frequently powering high-energy activity in X-rays. Pulsed radio emission following some X-ray outbursts have been detected, albeit its physical origin is unclear. It has long been speculated that the origin of magnetars' radio signals is different from those from canonical pulsars, although convincing evidence is still lacking. Five months after magnetar SGR 1935+2154's X-ray outburst and its associated Fast Radio Burst (FRB) 20200428, a radio pulsar phase was discovered. Here we report the discovery of X-ray spectral hardening associated with the emergence of periodic radio pulsations from SGR 1935+2154 and a detailed analysis of the properties of the radio pulses. The complex radio pulse morphology, which contains both narrow-band emission and frequency drifts, has not been seen before in other magnetars, but is similar to those of repeating FRBs - even though the luminosities are many orders of magnitude different. The observations suggest that radio emission originates from the outer magnetosphere of the magnetar, and the surface heating due to the bombardment of inward-going particles from the radio emission region is responsible for the observed X-ray spectral hardening.Comment: 47 pages, 11 figure

    Direct Measurements of the Branching Fractions for D0Ke+νeD^0 \to K^-e^+\nu_e and D0πe+νeD^0 \to \pi^-e^+\nu_e and Determinations of the Form Factors f+K(0)f_{+}^{K}(0) and f+π(0)f^{\pi}_{+}(0)

    Get PDF
    The absolute branching fractions for the decays D0Ke+νeD^0 \to K^-e ^+\nu_e and D0πe+νeD^0 \to \pi^-e^+\nu_e are determined using 7584±198±3417584\pm 198 \pm 341 singly tagged Dˉ0\bar D^0 sample from the data collected around 3.773 GeV with the BES-II detector at the BEPC. In the system recoiling against the singly tagged Dˉ0\bar D^0 meson, 104.0±10.9104.0\pm 10.9 events for D0Ke+νeD^0 \to K^-e ^+\nu_e and 9.0±3.69.0 \pm 3.6 events for D0πe+νeD^0 \to \pi^-e^+\nu_e decays are observed. Those yield the absolute branching fractions to be BF(D0Ke+νe)=(3.82±0.40±0.27)BF(D^0 \to K^-e^+\nu_e)=(3.82 \pm 0.40\pm 0.27)% and BF(D0πe+νe)=(0.33±0.13±0.03)BF(D^0 \to \pi^-e^+\nu_e)=(0.33 \pm 0.13\pm 0.03)%. The vector form factors are determined to be f+K(0)=0.78±0.04±0.03|f^K_+(0)| = 0.78 \pm 0.04 \pm 0.03 and f+π(0)=0.73±0.14±0.06|f^{\pi}_+(0)| = 0.73 \pm 0.14 \pm 0.06. The ratio of the two form factors is measured to be f+π(0)/f+K(0)=0.93±0.19±0.07|f^{\pi}_+(0)/f^K_+(0)|= 0.93 \pm 0.19 \pm 0.07.Comment: 6 pages, 5 figure
    corecore