301 research outputs found

    Yin-Cold

    Get PDF
    Traditional Chinese Medicine (TCM) therapies should be tailored according to the different syndrome types. In order to identify the relationship between the TCM Yin-cold (YC) or Yang-heat (YH) syndrome types and the EGFR gene status, we prospectively studied 310 NSCLC patients. TCM YH or YC was diagnosed by three TCM experts. TCM symptoms and signs were entered into a binary cluster analysis. The relationships between the EGFR gene status, YH or YC syndrome types, and classification by cluster analysis were analyzed using the chi-square test and multivariate logistic regression. In the 299 patients who had their EGFR gene tested, 45.24% YC (76/168) and 25.95% YH (34/131) patients had EGFR mutations (p=0.001). Among the 292 patients entered into the cluster analysis, 132 were classified into group A, with signs and symptoms similar to YC, whereas 160 group B patients were similar to YH. In the 281 patients with EGFR tested, 45.67% group A (58/127) and 28.57% group B patients (44/154) had EGFR mutations (p=0.003). The EGFR status was independently correlated with TCM syndrome type and classification by cluster analysis on multivariate logistic regression. NSCLC patients with YC were more likely to have EGFR gene mutations

    Maximizing temporal quantum correlation by approaching an exceptional point

    Full text link
    Quantum correlations, both spatial and temporal, are the central pillars of quantum mechanics. Over the last two decades, a big breakthrough in quantum physics is its complex extension to the non-Hermitian realm, and dizzying varieties of novel phenomena and applications beyond the Hermitian framework have been uncovered. However, unique features of non-Hermitian quantum correlations, especially in the time domain, still remain to be explored. Here, for the first time, we experimentally achieve this goal by using a parity-time (PT )-symmetric trapped-ion system. The upper limit of temporal quantum correlations, known as the algebraic bound, which has so far not been achieved in the standard measurement scenario, is reached here by approaching the exceptional point (EP), thus showing the unexpected ability of EPs in tuning temporal quantum correlation effects. Our study, unveiling the fundamental interplay of non-Hermiticity, nonlinearity, and temporal quantum correlations, provides the first step towards exploring and utilizing various non-Hermitian temporal quantum effects by operating a wide range of EP devices, which are important for both fundamental studies and applications of quantum EP systems.Comment: 4 figures and 8 page

    ERK3 Is Required for Metaphase-Anaphase Transition in Mouse Oocyte Meiosis

    Get PDF
    ERK3 (extracellular signal-regulated kinase 3) is an atypical member of the mitogen-activated protein (MAP) kinase family of serine/threonine kinases. Little is known about its function in mitosis, and even less about its roles in mammalian oocyte meiosis. In the present study, we examined the localization, expression and functions of ERK3 during mouse oocyte meiotic maturation. Immunofluorescent analysis showed that ERK3 localized to the spindles from the pre-MI stage to the MII stage. ERK3 co-localized with α-tubulin on the spindle fibers and asters in oocytes after taxol treatment. Deletion of ERK3 by microinjection of ERK3 morpholino (ERK3 MO) resulted in oocyte arrest at the MI stage with severely impaired spindles and misaligned chromosomes. Most importantly, the spindle assembly checkpoint protein BubR1 could be detected on kinetochores even in oocytes cultured for 10 h. Low temperature treatment experiments indicated that ERK3 deletion disrupted kinetochore-microtubule (K-MT) attachments. Chromosome spreading experiments showed that knock-down of ERK3 prevented the segregation of homologous chromosomes. Our data suggest that ERK3 is crucial for spindle stability and required for the metaphase-anaphase transition in mouse oocyte maturation

    The CTNNBIP1-CLSTN1 fusion transcript regulates human neocortical development

    Get PDF
    Fusion transcripts or RNAs have been found in both disordered and healthy human tissues and cells; however, their physiological functions in the brain development remain unknown. In the analysis of deposited RNA-sequence libraries covering early to middle embryonic stages, we identify 1,055 fusion transcripts present in the developing neocortex. Interestingly, 98 fusion transcripts exhibit distinct expression patterns in various neural progenitors (NPs) or neurons. We focus on CTNNBIP1-CLSTN1 (CTCL), which is enriched in outer radial glial cells that contribute to cortex expansion during human evolution. Intriguingly, downregulation of CTCL in cultured human cerebral organoids causes marked reduction in NPs and precocious neuronal differentiation, leading to impairment of organoid growth. Furthermore, the expression of CTCL fine-tunes Wnt/β-catenin signaling that controls cortex patterning. Together, this work provides evidence indicating important roles of fusion transcript in human brain development and evolution

    Proteomic profiling reveals α1-antitrypsin, α1-microglobulin, and clusterin as preeclampsia-related serum proteins in pregnant women

    Get PDF
    AbstractObjectivePreeclampsia is a major cause of mortality in pregnant women but the underlying mechanism remains unclear to date. In this study, we attempted to identify candidate proteins that might be associated with preeclampsia in pregnant women by means of proteomics tools.Materials and methodsDifferentially expressed proteins in serum samples obtained from pregnant women with severe preeclampsia (n = 8) and control participants (n = 8) were identified using two-dimensional gel electrophoresis (2-DE) followed by peptide mass fingerprinting using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS). Additional serum samples from 50 normal and 41 pregnant women with severe preeclampsia were analyzed by immunoassay for validation.ResultsTen protein spots were found to be upregulated significantly in women with severe preeclampsia. These protein spots had the peptide mass fingerprints matched to α1-antitrypsin, α1-microglobulin, clusterin, and haptoglobin. Immunoassays in an independent series of serum samples showed that serum α1-antitrypsin, α1-microglobulin, and clusterin levels of severe preeclampsia patients (n = 41) were significantly higher than those in the normal participants (n = 50; α1-antitrypsin 295.95 ± 50.94 mg/dL vs. 259.31 ± 33.90 mg/dL, p = 0.02; α1-microglobulin 0.029 ± 0.004 mg/mL vs. 0.020 ± 0.004 mg/mL, p < 0.0001; clusterin 77.6 ± 16.15 μg/dL vs. 67.6 ± 15.87 μg/dL, p < 0.05).ConclusionIdentification of these proteins by proteomics analysis enables further understanding of the pathophysiology of preeclampsia. Further studies are warranted to investigate the role of these biomarkers in prediction of this disease

    Using fluorene to lock electronically active moieties in thermally activated delayed fluorescence emitters for high-performance non-doped organic light-emitting diodes with suppressed roll-off.

    Get PDF
    Thermally activated delayed fluorescence (TADF) emitters with aggregation-induced emission (AIE) features are hot candidates for non-doped organic light-emitting diodes (OLEDs), as they are highly emissive in solid states upon photoexcitation. Nevertheless, not every AIE-TADF emitter in the past had guaranteed decent efficiencies in non-doped devices, indicating that the AIE character alone does not necessarily afford ideal non-doped TADF emitters. As intermolecular electron-exchange interaction that involves long-lived triplet excitons plays a dominant role in the whole quenching process of TADF, we anticipate that it is the main reason for the different electroluminescence performances of AIE-TADF emitters. Therefore, in this work, we designed two TADF emitters SPBP-DPAC and SPBP-SPAC by modifying a reported less successful emitter BP-DPAC with extra fluorenes to increase intermolecular distances and attenuate this electron-exchange interaction. With the fluorene lock as steric hindrance, SPBP-DPAC and SPBP-SPAC exhibit significantly higher exciton utilization in non-doped films due to the suppressed concentration quenching. The non-doped OLEDs based on SPBP-DPAC and SPBP-SPAC show an excellent maximum external quantum efficiency (EQE) of 22.8% and 21.3% respectively, and whats even more promising is that ignorable roll-offs at practical brightness (e.g., 1000 and 5000 cd m-2) were realized. These results reveal that locking the phenyl rings as steric hindrance can not only enhance the molecular rigidity, but also cause immediate relief of concentration quenching, and result in significant performance improvement under non-doped conditions. Our approach proposes a feasible molecular modification strategy for AIE-TADF emitters, potentially increasing their applicability in OLEDs

    Factors influencing cognitive function in patients with Huntington's disease from China: A cross-sectional clinical study.

    Get PDF
    BACKGROUND AND AIM Huntington's disease (HD) is an autosomal dominant inherited neurodegenerative disorder caused by CAG repeats expansion. Cognitive decline contributes to the loss of daily activity in manifest HD. We aimed to examine the cognition status in a Chinese HD cohort and explore factors influencing the diverse cognitive domains. METHODS A total of 205 participants were recruited in the study with the assessment by neuropsychological batteries, including the mini-mental state examination (MMSE), Stroop test, symbol digit modalities test (SDMT), trail making test (TMT), verbal fluency test (VFT), and Hopkins verbal learning test-revised, as well as motor and psychiatric assessment. Pearson correlation and multiple linear regression models were applied to investigate the correlation. RESULTS Only 41.46% of patients had normal global function first come to our center. There was a significantly difference in MMSE, Stroop test, SDMT, TMT, and VFT across each stage of HD patients (p < .05). Apathy of PBA-s was correlated to MMSE, animal VFT and Stroop-interference tests performance. Severity of motor symptoms, functional capacity, age, and age of motor symptom onset were correlated to all neuropsychological scores, whereas education attainment and diagnostic delay were correlated to most neuropsychological scores except TMT. Severity of motor symptoms, functional capacity, and education attainment showed independent predicting effect (p < .05) in diverse cognitive domains. CONCLUSION Cognitive impairment was very common in Chinese HD patients at the first visit and worse in the patients in advanced phase. The severity of motor symptoms and functional capacity were correlated to the diverse cognitive domains
    • …
    corecore