1,980 research outputs found

    Discovery of gamma-ray emission from a strongly lobe-dominated quasar 3C 275.1

    Full text link
    We systematically analyze the 6-year {\it Fermi}/LAT data of the lobe-dominated quasars (LDQs) in the complete LDQ sample from 3CRR survey and report the discovery of high-energy γ\gamma-ray emission from 3C 275.1. The γ\gamma-ray emission of 3C 207 is confirmed and significant variability of the lightcurve is identified. We do not find statistically significant γ\gamma-ray emission from other LDQs. 3C 275.1 is the known γ\gamma-ray quasar with the lowest core dominance parameter (i.e., R=0.11R=0.11). We also show that both the northern radio hotspot and parsec jet models can reasonably reproduce the γ\gamma-ray data. The parsec jet model, however, is favored by the potential γ\gamma-ray variability at the timescale of months. We suggest that some dimmer γ\gamma-ray LDQs will be detected in the future and LDQs could contribute non-negligibly to the extragalactic γ\gamma-ray background.Comment: 26 pages, 10 figures, 3 tables; ApJ in pres

    dmPFC-vlPAG projection neurons contribute to pain threshold maintenance and antianxiety behaviors

    Get PDF
    The dorsal medial prefrontal cortex (dmPFC) has been recognized as a key cortical area for nociceptive modulation. However, the underlying neural pathway and the function of specific cell types remain largely unclear. Here, we show that lesions in the dmPFC induced an algesic and anxious state. Using multiple tracing methods including a rabies-based transsynaptic tracing method, we outlined an excitatory descending neural pathway from the dmPFC to the ventrolateral periaqueductal gray (vlPAG). Specific activation of the dmPFC/vlPAG neural pathway by optogenetic manipulation produced analgesic and antianxiety effects in a mouse model of chronic pain. Inhibitory neurons in the dmPFC were specifically activated using a chemogenetic approach, which logically produced an algesic and anxious state under both normal and chronic pain conditions. Antagonists of the GABAA receptor (GABAAR) or mGluR1 were applied to the dmPFC, which produced analgesic and antianxiety effects. In summary, the results of our study suggest that the dmPFC/vlPAG neural pathway might participate in the maintenance of pain thresholds and antianxiety behaviors under normal conditions, while silencing or suppressing the dmPFC/vlPAG pathway might be involved in the initial stages and maintenance of chronic pain and the emergence of anxiety-like behaviors

    Light-enhanced van der Waals force microscopy

    Full text link
    Atomic force microscope (AFM) generally works on the basis of manipulating absolute magnitude of van der Waals (vdW) force between the tip and specimen. The force is, however, less sensitive to alternation of atom species than to tip-sample separations, resulting in the difficulty of compositional identification, even under multi-modal strategies and other AFM variations. Here, we report a phenomenon of light enhancement of van der Waals force (LvF), and the enhancement factor is found specific to materials. The force difference prior and after illumination, instead of the tip-specimen force itself, is employed for discriminating heterogeneous phases. The corresponding LvF microscopy (LvFM) demonstrates not only a ultra-high compositional resolution represented by 20 dB enhancement factor and 150 times of the detection limit, but also a sub-10 nm lateral spatial resolution much smaller than the tip size of 20 nm. The simplicity of the opto-thermal mechanism, minuteness of excitation light power and wide availability of boosting lasers at various wavelengths imply broad applications of LvFM on nano-materials characterization, particularly on two-dimensional semiconductors that are promising as new generation of chip materials

    Multi-tests for pore structure characterization-A case study using lamprophyre

    Get PDF
    The pore structure plays an important role to understand methane adsorption, storage and flow behavior of geological materials. In this paper, the multi-tests including N2 adsorption, mercury intrusion porosimetry (MIP) and CT reconstruction have been proposed on Tashan lamprophyre samples. The main findings are listed: (1) The pore size distribution has a broad range ranging from 2-100000nm, among which the adsorption pores (\u3c100nm) occupies the mainly specific surface areas and pore volume while the seepage pores (\u3e100nm) only account for 34% of total pore volume. (2) The lamprophyre open pores are mainly slit-like/plate-like and ink-bottle-shaped pores on a two-dimensional level. The lamprophyre 3D pore structure shows more stochastic and anisotropic extension on the z axis to form a complex pore system on a three-dimensional level. (3) The closed pores (\u3e647nm) occupy averaged 74.86% and 72.75% of total pores (\u3e647nm) volume and specific surface area indicating a poor connectivity pore system. The revealed results provide basic information for understanding the abnormal methane emission reasons in similar geological conditions with lamprophyre invasions

    Aberrant hippocampal subregion networks associated with the classifications of aMCI subjects: a longitudinal resting-state study

    Get PDF
    Background: Altered hippocampal structure and function is a valuable indicator of possible conversion from amnestic type mild cognitive impairment (aMCI) to Alzheimer’s disease (AD). However, little is known about the disrupted functional connectivity of hippocampus subregional networks in aMCI subjects. Methodology/Principal Findings: aMCI group-1 (n = 26) and controls group-1 (n = 18) underwent baseline and after approximately 20 months follow up resting-state fMRI scans. Integrity of distributed functional connectivity networks incorporating six hippocampal subregions (i.e. cornu ammonis, dentate gyrus and subicular complex, bilaterally) was then explored over time and comparisons made between groups. The ability of these extent longitudinal changes to separate unrelated groups of 30 subjects (aMCI-converters, n = 6; aMCI group-2, n = 12; controls group-2, n = 12) were further assessed. Six longitudinal hippocampus subregional functional connectivity networks showed similar changes in aMCI subjects over time, which were mainly associated with medial frontal gyrus, lateral temporal cortex, insula, posterior cingulate cortex (PCC) and cerebellum. However, the disconnection of hippocampal subregions and PCC may be a key factor of impaired episodic memory in aMCI, and the functional index of these longitudinal changes allowed well classifying independent samples of aMCI converters from non-converters (sensitivity was 83.3%, specificity was 83.3%) and controls (sensitivity was 83.3%, specificity was 91.7%). Conclusions/Significance: It demonstrated that the functional changes in resting-state hippocampus subregional networks could be an important and early indicator for dysfunction that may be particularly relevant to early stage changes and progression of aMCI subjects
    • …
    corecore