4,383 research outputs found

    Enhancing Hydrogen Generation Through Nanoconfinement of Sensitizers and Catalysts in a Homogeneous Supramolecular Organic Framework.

    Get PDF
    Enrichment of molecular photosensitizers and catalysts in a confined nanospace is conducive for photocatalytic reactions due to improved photoexcited electron transfer from photosensitizers to catalysts. Herein, the self-assembly of a highly stable 3D supramolecular organic framework from a rigid bipyridine-derived tetrahedral monomer and cucurbit[8]uril in water, and its efficient and simultaneous intake of both [Ru(bpy)3 ]2+ -based photosensitizers and various polyoxometalates, that can take place at very low loading, are reported. The enrichment substantially increases the apparent concentration of both photosensitizer and catalyst in the interior of the framework, which leads to a recyclable, homogeneous, visible light-driven photocatalytic system with 110-fold increase of the turnover number for the hydrogen evolution reaction

    DS-SLAM: A Semantic Visual SLAM towards Dynamic Environments

    Full text link
    Simultaneous Localization and Mapping (SLAM) is considered to be a fundamental capability for intelligent mobile robots. Over the past decades, many impressed SLAM systems have been developed and achieved good performance under certain circumstances. However, some problems are still not well solved, for example, how to tackle the moving objects in the dynamic environments, how to make the robots truly understand the surroundings and accomplish advanced tasks. In this paper, a robust semantic visual SLAM towards dynamic environments named DS-SLAM is proposed. Five threads run in parallel in DS-SLAM: tracking, semantic segmentation, local mapping, loop closing, and dense semantic map creation. DS-SLAM combines semantic segmentation network with moving consistency check method to reduce the impact of dynamic objects, and thus the localization accuracy is highly improved in dynamic environments. Meanwhile, a dense semantic octo-tree map is produced, which could be employed for high-level tasks. We conduct experiments both on TUM RGB-D dataset and in the real-world environment. The results demonstrate the absolute trajectory accuracy in DS-SLAM can be improved by one order of magnitude compared with ORB-SLAM2. It is one of the state-of-the-art SLAM systems in high-dynamic environments. Now the code is available at our github: https://github.com/ivipsourcecode/DS-SLAMComment: 7 pages, accepted at the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2018). Now the code is available at our github: https://github.com/ivipsourcecode/DS-SLA

    Deformable Convolutional Networks

    Full text link
    Convolutional neural networks (CNNs) are inherently limited to model geometric transformations due to the fixed geometric structures in its building modules. In this work, we introduce two new modules to enhance the transformation modeling capacity of CNNs, namely, deformable convolution and deformable RoI pooling. Both are based on the idea of augmenting the spatial sampling locations in the modules with additional offsets and learning the offsets from target tasks, without additional supervision. The new modules can readily replace their plain counterparts in existing CNNs and can be easily trained end-to-end by standard back-propagation, giving rise to deformable convolutional networks. Extensive experiments validate the effectiveness of our approach on sophisticated vision tasks of object detection and semantic segmentation. The code would be released
    corecore