5 research outputs found

    Establishment and validation of early prediction model for hypertriglyceridemic severe acute pancreatitis

    No full text
    Abstract Background The prevalence of hypertriglyceridaemia-induced acute pancreatitis (HTG-AP) is increasing due to improvements in living standards and dietary changes. However, currently, there is no clinical multifactor scoring system specific to HTG-AP. This study aimed to screen the predictors of HTG-SAP and combine several indicators to establish and validate a visual model for the early prediction of HTG-SAP. Methods The clinical data of 266 patients with HTG-SAP were analysed. Patients were classified into severe (N = 42) and non-severe (N = 224) groups according to the Atlanta classification criteria. Several statistical analyses, including one-way analysis, least absolute shrinkage with selection operator (LASSO) regression model, and binary logistic regression analysis, were used to evaluate the data. Results The univariate analysis showed that several factors showed no statistically significant differences, including the number of episodes of pancreatitis, abdominal pain score, and several blood diagnostic markers, such as lactate dehydrogenase (LDH), serum calcium (Ca2+), C-reactive protein (CRP), and the incidence of pleural effusion, between the two groups (P  0.05). The decision curve analysis plot suggested that clinical intervention can benefit patients when the model predicts that they are at risk for developing HTG-SAP. Conclusions CRP, LDH, Ca2+, and ascites are independent predictors of HTG-SAP. The prediction model constructed based on these indicators has a high accuracy, sensitivity, consistency, and practicability in predicting HTG-SAP

    Establishment of Personalized Finite Element Model of Crystalline Lens Based on Sweep-Source Optical Coherence Tomography

    No full text
    The virtual lens model has important value in ophthalmic research, clinical diagnosis, and treatment. However, the establishment of personalized lens models and the verification of accommodation accuracy have not been paid much attention. We proposed a personalized lens model establishment and the accommodation accuracy evaluation method based on sweep-source optical coherence tomography (SS-OCT). Firstly, SS-OCT is used to obtain a single lens image in the maximum accommodation state. After refraction correction, boundary detection, and curve fitting, the central curvature radius, thickness, and lens nucleus contour of the anterior and posterior surfaces of the lens were obtained. Secondly, a personalized finite element model improved from Burd’s model was established using these individual parameters, and the adaptation process of the lens model was simulated by pulling the suspensory ligament. Finally, the shape and refractive power changes of the real human lens under different accommodation stimuli were collected and compared with the accommodation process of the finite element model. The results show that the accommodation process of the finite element model is highly consistent with that of the real lens. From the un-accommodation state to the maximum-accommodation state, the difference rate of all geometric and refractive parameters between the two is less than 5%. Thus, the personalized lens finite element model obtained by the calibration and correction of the existing model can accurately simulate the regulation process of a specific human lens. This work helps to provide a valuable theoretical basis and research ideas for the study of clinical diagnosis and treatment of related diseases

    Establishment of Personalized Finite Element Model of Crystalline Lens Based on Sweep-Source Optical Coherence Tomography

    No full text
    The virtual lens model has important value in ophthalmic research, clinical diagnosis, and treatment. However, the establishment of personalized lens models and the verification of accommodation accuracy have not been paid much attention. We proposed a personalized lens model establishment and the accommodation accuracy evaluation method based on sweep-source optical coherence tomography (SS-OCT). Firstly, SS-OCT is used to obtain a single lens image in the maximum accommodation state. After refraction correction, boundary detection, and curve fitting, the central curvature radius, thickness, and lens nucleus contour of the anterior and posterior surfaces of the lens were obtained. Secondly, a personalized finite element model improved from Burd’s model was established using these individual parameters, and the adaptation process of the lens model was simulated by pulling the suspensory ligament. Finally, the shape and refractive power changes of the real human lens under different accommodation stimuli were collected and compared with the accommodation process of the finite element model. The results show that the accommodation process of the finite element model is highly consistent with that of the real lens. From the un-accommodation state to the maximum-accommodation state, the difference rate of all geometric and refractive parameters between the two is less than 5%. Thus, the personalized lens finite element model obtained by the calibration and correction of the existing model can accurately simulate the regulation process of a specific human lens. This work helps to provide a valuable theoretical basis and research ideas for the study of clinical diagnosis and treatment of related diseases
    corecore