13,436 research outputs found
Virtual Reality Rhythm Game
Virtual reality headsets such as the HTC Vive and Oculus Rift bring robust virtual reality technology in the hands of consumers. However, virtual reality technology is still a very new and unexplored domain with a dearth of compelling software that takes advantage of what virtual reality has to offer. Current rhythm games on the virtual reality platform lack a sense of immersion for the player. These games also require players to remain stationary during gameplay. Our solution is a game where players have to hit musical notes that appear in a trail around them. The trail will move in different directions and players have to move and turn around accordingly in order to hit every note and pass a song
Entanglement Increases the Error-Correcting Ability of Quantum Error-Correcting Codes
If entanglement is available, the error-correcting ability of quantum codes
can be increased. We show how to optimize the minimum distance of an
entanglement-assisted quantum error-correcting (EAQEC) code, obtained by adding
ebits to a standard quantum error-correcting code, over different encoding
operators. By this encoding optimization procedure, we found several new EAQEC
codes, including a family of [[n, 1, n; n-1]] EAQEC codes for n odd and code
parameters [[7, 1, 5; 2]], [[7, 1, 5; 3]], [[9, 1, 7; 4]], [[9, 1, 7; 5]],
which saturate the quantum singleton bound for EAQEC codes. A random search
algorithm for the encoding optimization procedure is also proposed.Comment: 39 pages, 10 table
Recommended from our members
Communication in an "Officeless firm"
New technologies permit new types of organisations. This article describes and analyses one such organisation, an "officeless firm", where all employees work from their own homes and there is no central office. Drawing upon observations and interviews, the modes of communication and the nature of the interpersonal relationships that have permitted this organisation to succeed are described, along with the challenges that face this organisation in the future as it attempts to grow
The Encoding and Decoding Complexities of Entanglement-Assisted Quantum Stabilizer Codes
Quantum error-correcting codes are used to protect quantum information from
decoherence. A raw state is mapped, by an encoding circuit, to a codeword so
that the most likely quantum errors from a noisy quantum channel can be removed
after a decoding process.
A good encoding circuit should have some desired features, such as low depth,
few gates, and so on. In this paper, we show how to practically implement an
encoding circuit of gate complexity for an
quantum stabilizer code with the help of pairs of maximally-entangled
states. For the special case of an stabilizer code with , the
encoding complexity is , which is previously known to be
. For this suggests that the benefits from shared
entanglement come at an additional cost of encoding complexity.
Finally we discuss decoding of entanglement-assisted quantum stabilizer codes
and extend previously known computational hardness results on decoding quantum
stabilizer codes.Comment: accepted by the 2019 IEEE International Symposium on Information
Theory (ISIT2019
- âŠ