36,824 research outputs found

    Stabilization of the p-wave superfluid state in an optical lattice

    Full text link
    It is hard to stabilize the p-wave superfluid state of cold atomic gas in free space due to inelastic collisional losses. We consider the p-wave Feshbach resonance in an optical lattice, and show that it is possible to have a stable p-wave superfluid state where the multi-atom collisional loss is suppressed through the quantum Zeno effect. We derive the effective Hamiltonian for this system, and calculate its phase diagram in a one-dimensional optical lattice. The results show rich phase transitions between the p-wave superfluid state and different types of insulator states induced either by interaction or by dissipation.Comment: 5 pages, 5 figure

    Rainbow universe

    Get PDF
    The formalism of rainbow gravity is studied in a cosmological setting. We consider the very early universe which is radiation dominated. A novel treatment in our paper is to look for an ``averaged'' cosmological metric probed by radiation particles themselves. Taking their cosmological evolution into account, we derive the modified Friedmann-Robertson-Walker(FRW) equations which is a generalization of the solution presented by Magueijo and Smolin. Based on this phenomenological cosmological model we argue that the spacetime curvature has an upper bound such that the cosmological singularity is absent. These modified FRWFRW equations can be treated as effective equations in the semi-classical framework of quantum gravity and its analogy with the one recently proposed in loop quantum cosmology is also discussed.Comment: 5 page

    Refinement of primary Si in hypereutectic Al-Si alloys by intensive melt shearing

    Get PDF
    Hypereutectic Al-Si based alloys are gaining popularity for applications where a combination of light weight and high wear resistance is required. The high wear resistance arising from the hard primary Si particles comes at the price of extremely poor machine tool life. To minimize machining problems while exploiting outstanding wear resistance, the primary Si particles must be controlled to a uniform small size and uniform spatial distribution. The current industrial means of refining primary Si chemically by the addition of phosphorous suffers from a number of problems. In the present paper an alternative, physical means of refining primary Si by intensive shearing of the melt prior to casting is investigated. Al-15wt%Si alloy has been solidified under varying casting conditions (cooling rate) and the resulting microstructures have been studied using microscopy and quantitative image analysis. Primary Si particles were finer, more compact in shape and more numerous with increasing cooling rate. Intensive melt shearing led to greater refinement and more enhanced nucleation of primary Si than was achieved by adding phosphorous. The mechanism of enhanced nucleation is discussed.EPSRC (grant EP/H026177/1)

    Quantum Monte Carlo simulations of a particle in a random potential

    Full text link
    In this paper we carry out Quantum Monte Carlo simulations of a quantum particle in a one-dimensional random potential (plus a fixed harmonic potential) at a finite temperature. This is the simplest model of an interface in a disordered medium and may also pertain to an electron in a dirty metal. We compare with previous analytical results, and also derive an expression for the sample to sample fluctuations of the mean square displacement from the origin which is a measure of the glassiness of the system. This quantity as well as the mean square displacement of the particle are measured in the simulation. The similarity to the quantum spin glass in a transverse field is noted. The effect of quantum fluctuations on the glassy behavior is discussed.Comment: 23 pages, 7 figures included as eps files, uses RevTeX. Accepted for publication in J. of Physics A: Mathematical and Genera

    Fresnel operator, squeezed state and Wigner function for Caldirola-Kanai Hamiltonian

    Full text link
    Based on the technique of integration within an ordered product (IWOP) of operators we introduce the Fresnel operator for converting Caldirola-Kanai Hamiltonian into time-independent harmonic oscillator Hamiltonian. The Fresnel operator with the parameters A,B,C,D corresponds to classical optical Fresnel transformation, these parameters are the solution to a set of partial differential equations set up in the above mentioned converting process. In this way the exact wavefunction solution of the Schr\"odinger equation governed by the Caldirola-Kanai Hamiltonian is obtained, which represents a squeezed number state. The corresponding Wigner function is derived by virtue of the Weyl ordered form of the Wigner operator and the order-invariance of Weyl ordered operators under similar transformations. The method used here can be suitable for solving Schr\"odinger equation of other time-dependent oscillators.Comment: 6 pages, 2 figure
    • …
    corecore