36,824 research outputs found
Stabilization of the p-wave superfluid state in an optical lattice
It is hard to stabilize the p-wave superfluid state of cold atomic gas in
free space due to inelastic collisional losses. We consider the p-wave Feshbach
resonance in an optical lattice, and show that it is possible to have a stable
p-wave superfluid state where the multi-atom collisional loss is suppressed
through the quantum Zeno effect. We derive the effective Hamiltonian for this
system, and calculate its phase diagram in a one-dimensional optical lattice.
The results show rich phase transitions between the p-wave superfluid state and
different types of insulator states induced either by interaction or by
dissipation.Comment: 5 pages, 5 figure
Rainbow universe
The formalism of rainbow gravity is studied in a cosmological setting. We
consider the very early universe which is radiation dominated. A novel
treatment in our paper is to look for an ``averaged'' cosmological metric
probed by radiation particles themselves. Taking their cosmological evolution
into account, we derive the modified Friedmann-Robertson-Walker(FRW) equations
which is a generalization of the solution presented by Magueijo and Smolin.
Based on this phenomenological cosmological model we argue that the spacetime
curvature has an upper bound such that the cosmological singularity is absent.
These modified equations can be treated as effective equations in the
semi-classical framework of quantum gravity and its analogy with the one
recently proposed in loop quantum cosmology is also discussed.Comment: 5 page
Recommended from our members
Evaluation of ECMWF medium-range ensemble forecasts of precipitation for river basins
Providing probabilistic forecasts using Ensemble Prediction Systems has become increasingly popular in both the meteorological and hydrological communities. Compared to conventional deterministic forecasts, probabilistic forecasts may provide more reliable forecasts of a few hours to a number of days ahead, and hence are regarded as better tools for taking uncertainties into consideration and hedging against weather risks. It is essential to evaluate performance of raw ensemble forecasts and their potential values in forecasting extreme hydro-meteorological events. This study evaluates ECMWF's medium-range ensemble forecasts of precipitation over the period 1 January 2008 to 30 September 2012 on a selected midlatitude large-scale river basin, the Huai river basin (ca. 270 000 km2) in central-east China. The evaluation unit is sub-basin in order to consider forecast performance in a hydrologically relevant way. The study finds that forecast performance varies with sub-basin properties, between flooding and non-flooding seasons, and with the forecast properties of aggregated time steps and lead times. Although the study does not evaluate any hydrological applications of the ensemble precipitation forecasts, its results have direct implications in hydrological forecasts should these ensemble precipitation forecasts be employed in hydrology
Refinement of primary Si in hypereutectic Al-Si alloys by intensive melt shearing
Hypereutectic Al-Si based alloys are gaining popularity for applications where a combination of light weight and high wear resistance is required. The high wear resistance arising from the hard primary Si particles comes at the price of extremely poor machine tool life. To minimize machining problems while exploiting outstanding wear resistance, the primary Si particles must be controlled to a uniform small size and uniform spatial distribution. The current industrial means of refining primary Si chemically by the addition of phosphorous suffers from a number of problems. In the present paper an alternative, physical means of refining primary Si by intensive shearing of the melt prior to casting is investigated. Al-15wt%Si alloy has been solidified under varying casting conditions (cooling rate) and the resulting microstructures have been studied using microscopy and quantitative image analysis. Primary Si particles were finer, more compact in shape and more numerous with increasing cooling rate. Intensive melt shearing led to greater refinement and more enhanced nucleation of primary Si than was achieved by adding phosphorous. The mechanism of enhanced nucleation is discussed.EPSRC (grant EP/H026177/1)
Quantum Monte Carlo simulations of a particle in a random potential
In this paper we carry out Quantum Monte Carlo simulations of a quantum
particle in a one-dimensional random potential (plus a fixed harmonic
potential) at a finite temperature. This is the simplest model of an interface
in a disordered medium and may also pertain to an electron in a dirty metal. We
compare with previous analytical results, and also derive an expression for the
sample to sample fluctuations of the mean square displacement from the origin
which is a measure of the glassiness of the system. This quantity as well as
the mean square displacement of the particle are measured in the simulation.
The similarity to the quantum spin glass in a transverse field is noted. The
effect of quantum fluctuations on the glassy behavior is discussed.Comment: 23 pages, 7 figures included as eps files, uses RevTeX. Accepted for
publication in J. of Physics A: Mathematical and Genera
Fresnel operator, squeezed state and Wigner function for Caldirola-Kanai Hamiltonian
Based on the technique of integration within an ordered product (IWOP) of
operators we introduce the Fresnel operator for converting Caldirola-Kanai
Hamiltonian into time-independent harmonic oscillator Hamiltonian. The Fresnel
operator with the parameters A,B,C,D corresponds to classical optical Fresnel
transformation, these parameters are the solution to a set of partial
differential equations set up in the above mentioned converting process. In
this way the exact wavefunction solution of the Schr\"odinger equation governed
by the Caldirola-Kanai Hamiltonian is obtained, which represents a squeezed
number state. The corresponding Wigner function is derived by virtue of the
Weyl ordered form of the Wigner operator and the order-invariance of Weyl
ordered operators under similar transformations. The method used here can be
suitable for solving Schr\"odinger equation of other time-dependent
oscillators.Comment: 6 pages, 2 figure
- …