34,246 research outputs found
Dynamical properties of dipolar Fermi gases
We investigate dynamical properties of a one-component Fermi gas with
dipole-dipole interaction between particles. Using a variational function based
on the Thomas-Fermi density distribution in phase space representation, the
total energy is described by a function of deformation parameters in both real
and momentum space. Various thermodynamic quantities of a uniform dipolar Fermi
gas are derived, and then instability of this system is discussed. For a
trapped dipolar Fermi gas, the collective oscillation frequencies are derived
with the energy-weighted sum rule method. The frequencies for the monopole and
quadrupole modes are calculated, and softening against collapse is shown as the
dipolar strength approaches the critical value. Finally, we investigate the
effects of the dipolar interaction on the expansion dynamics of the Fermi gas
and show how the dipolar effects manifest in an expanded cloud.Comment: 14 pages, 8 figures, submitted to New J. Phy
Exotic Topological States with Raman-Induced Spin-Orbit Coupling
We propose a simple experimental scheme to realize simultaneously the
one-dimensional spin-orbit coupling and the staggered spin-flip in ultracold
pseudospin- atomic Fermi gases trapped in square optical lattices. In the
absence of interspecies interactions, the system supports gapped Chern
insulators and gapless topological semimetal states. By turning on the -wave
interactions, a rich variety of gapped and gapless inhomogeneous topological
superfluids can emerge. In particular, a gapped topological Fulde-Ferrell
superfluid, in which the chiral edge states at opposite boundaries possess the
same chirality, is predicted.Comment: 11 pages, 6 figure
Berry's phase with quantized field driving: effects of inter-subsystem coupling
The effect of inter-subsystem couplings on the Berry phase of a composite
system as well as that of its subsystem is investigated in this paper. We
analyze two coupled spin- particles with one driven by a quantized
field as an example, the pure state geometric phase of the composite system as
well as the mixed state geometric phase for the subsystem is calculated and
discussed.Comment: 4 pages, 1 figur
Refinement of primary Si in hypereutectic Al-Si alloys by intensive melt shearing
Hypereutectic Al-Si based alloys are gaining popularity for applications where a combination of light weight and high wear resistance is required. The high wear resistance arising from the hard primary Si particles comes at the price of extremely poor machine tool life. To minimize machining problems while exploiting outstanding wear resistance, the primary Si particles must be controlled to a uniform small size and uniform spatial distribution. The current industrial means of refining primary Si chemically by the addition of phosphorous suffers from a number of problems. In the present paper an alternative, physical means of refining primary Si by intensive shearing of the melt prior to casting is investigated. Al-15wt%Si alloy has been solidified under varying casting conditions (cooling rate) and the resulting microstructures have been studied using microscopy and quantitative image analysis. Primary Si particles were finer, more compact in shape and more numerous with increasing cooling rate. Intensive melt shearing led to greater refinement and more enhanced nucleation of primary Si than was achieved by adding phosphorous. The mechanism of enhanced nucleation is discussed.EPSRC (grant EP/H026177/1)
Spin freezing and dynamics in Ca_{3}Co_{2-x}Mn_{x}O_{6} (x ~ 0.95) investigated with implanted muons: disorder in the anisotropic next-nearest neighbor Ising model
We present a muon-spin relaxation investigation of the Ising chain magnet
Ca_{3}Co_{2-x}Mn_{x}O_{6} (x~0.95). We find dynamic spin fluctuations
persisting down to the lowest measured temperature of 1.6 K. The previously
observed transition at around T ~18 K is interpreted as a subtle change in
dynamics for a minority of the spins coupling to the muon that we interpret as
spins locking into clusters. The dynamics of this fraction of spins freeze
below a temperature T_{SF}~8 K, while a majority of spins continue to
fluctuate. An explanation of the low temperature behavior is suggested in terms
of the predictions of the anisotropic next-nearest-neighbor Ising model.Comment: 4 pages, 2 figure
- …