11 research outputs found

    Robust Variance Estimation for Covariate-Adjusted Unconditional Treatment Effect in Randomized Clinical Trials with Binary Outcomes

    Full text link
    To improve precision of estimation and power of testing hypothesis for an unconditional treatment effect in randomized clinical trials with binary outcomes, researchers and regulatory agencies recommend using g-computation as a reliable method of covariate adjustment. However, the practical application of g-computation is hindered by the lack of an explicit robust variance formula that can be used for different unconditional treatment effects of interest. To fill this gap, we provide explicit and robust variance estimators for g-computation estimators and demonstrate through simulations that the variance estimators can be reliably applied in practice

    A General Form of Covariate Adjustment in Randomized Clinical Trials

    Full text link
    In randomized clinical trials, adjusting for baseline covariates has been advocated as a way to improve credibility and efficiency for demonstrating and quantifying treatment effects. This article studies the augmented inverse propensity weighted (AIPW) estimator, which is a general form of covariate adjustment that includes approaches using linear and generalized linear models and machine learning models. Under covariate-adaptive randomization, we establish a general theorem that shows a complete picture about the asymptotic normality, efficiency gain, and applicability of AIPW estimators. Based on the general theorem, we provide insights on the conditions for guaranteed efficiency gain and universal applicability under different randomization schemes, which also motivate a joint calibration strategy using some constructed covariates after applying AIPW. We illustrate the application of the general theorem with two examples, the generalized linear model and the machine learning model. We provide the first theoretical justification of using machine learning methods with dependent data under covariate-adaptive randomization. Our methods are implemented in the R package RobinCar

    AutoPrep: An Automatic Preprocessing Framework for In-the-Wild Speech Data

    Full text link
    Recently, the utilization of extensive open-sourced text data has significantly advanced the performance of text-based large language models (LLMs). However, the use of in-the-wild large-scale speech data in the speech technology community remains constrained. One reason for this limitation is that a considerable amount of the publicly available speech data is compromised by background noise, speech overlapping, lack of speech segmentation information, missing speaker labels, and incomplete transcriptions, which can largely hinder their usefulness. On the other hand, human annotation of speech data is both time-consuming and costly. To address this issue, we introduce an automatic in-the-wild speech data preprocessing framework (AutoPrep) in this paper, which is designed to enhance speech quality, generate speaker labels, and produce transcriptions automatically. The proposed AutoPrep framework comprises six components: speech enhancement, speech segmentation, speaker clustering, target speech extraction, quality filtering and automatic speech recognition. Experiments conducted on the open-sourced WenetSpeech and our self-collected AutoPrepWild corpora demonstrate that the proposed AutoPrep framework can generate preprocessed data with similar DNSMOS and PDNSMOS scores compared to several open-sourced TTS datasets. The corresponding TTS system can achieve up to 0.68 in-domain speaker similarity

    Covariate-Adjusted Log-Rank Test: Guaranteed Efficiency Gain and Universal Applicability

    Full text link
    Nonparametric covariate adjustment is considered for log-rank type tests of treatment effect with right-censored time-to-event data from clinical trials applying covariate-adaptive randomization. Our proposed covariate-adjusted log-rank test has a simple explicit formula and a guaranteed efficiency gain over the unadjusted test. We also show that our proposed test achieves universal applicability in the sense that the same formula of test can be universally applied to simple randomization and all commonly used covariate-adaptive randomization schemes such as the stratified permuted block and Pocock and Simon's minimization, which is not a property enjoyed by the unadjusted log-rank test. Our method is supported by novel asymptotic theory and empirical results for type I error and power of tests

    Toward Better Practice of Covariate Adjustment in Analyzing Randomized Clinical Trials

    No full text
    In randomized clinical trials, adjustments for baseline covariates at both design and analysis stages are highly encouraged by regulatory agencies. A recent trend is to use a model-assisted approach for covariate adjustment to gain credibility and efficiency while producing asymptotically valid inference even when the model is incorrect. In this article we present three considerations for better practice when model-assisted inference is applied to adjust for covariates under simple or covariate-adaptive randomized trials: (1) guaranteed efficiency gain: a model-assisted method should often gain but never hurt efficiency; (2) wide applicability: a valid procedure should be applicable, and preferably universally applicable, to all commonly used randomization schemes; (3) robust standard error: variance estimation should be robust to model misspecification and heteroscedasticity. To achieve these, we recommend a model-assisted estimator under an analysis of heterogeneous covariance working model including all covariates utilized in randomization. Our conclusions are based on an asymptotic theory that provides a clear picture of how covariate-adaptive randomization and regression adjustment alter statistical efficiency. Our theory is more general than the existing ones in terms of studying arbitrary functions of response means (including linear contrasts, ratios, and odds ratios), multiple arms, guaranteed efficiency gain, optimality, and universal applicability.Isaact Newton Trus

    Testing for Treatment Effect Twice Using Internal and External Controls in Clinical Trials

    Full text link
    Leveraging external controls -- relevant individual patient data under control from external trials or real-world data -- has the potential to reduce the cost of randomized controlled trials (RCTs) while increasing the proportion of trial patients given access to novel treatments. However, due to lack of randomization, RCT patients and external controls may differ with respect to covariates that may or may not have been measured. Hence, after controlling for measured covariates, for instance by matching, testing for treatment effect using external controls may still be subject to unmeasured biases. In this paper, we propose a sensitivity analysis approach to quantify the magnitude of unmeasured bias that would be needed to alter the study conclusion that presumed no unmeasured biases are introduced by employing external controls. Whether leveraging external controls increases power or not depends on the interplay between sample sizes and the magnitude of treatment effect and unmeasured biases, which may be difficult to anticipate. This motivates a combined testing procedure that performs two highly correlated analyses, one with and one without external controls, with a small correction for multiple testing using the joint distribution of the two test statistics. The combined test provides a new method of sensitivity analysis designed for data fusion problems, which anchors at the unbiased analysis based on RCT only and spends a small proportion of the type I error to also test using the external controls. In this way, if leveraging external controls increases power, the power gain compared to the analysis based on RCT only can be substantial; if not, the power loss is small. The proposed method is evaluated in theory and power calculations, and applied to a real trial
    corecore