3,712 research outputs found

    Low magnetic field reversal of electric polarization in a Y-type hexaferrite

    Full text link
    Magnetoelectric multiferroics in which ferroelectricity and magnetism coexist have attracted extensive attention because they provide great opportunities for the mutual control of electric polarization by magnetic fields and magnetization by electric fields. From a practical point view, the main challenge in this field is to find proper multiferroic materials with a high operating temperature and great magnetoelectric sensitivity. Here we report on the magnetically tunable ferroelectricity and the giant magnetoelectric sensitivity up to 250 K in a Y-type hexaferrite, BaSrCoZnFe11AlO22. Not only the magnitude but also the sign of electric polarization can be effectively controlled by applying low magnetic fields (a few hundreds of Oe) that modifies the spiral magnetic structures. The magnetically induced ferroelectricity is stabilized even in zero magnetic field. Decayless reproducible flipping of electric polarization by oscillating low magnetic fields is shown. The maximum linear magnetoelectric coefficient reaches a high value of ~ 3.0\times10^3 ps/m at 200 K.Comment: 9 pages, 5 figures, a couple of errors are correcte

    Nevus-Like Appearance of Primary Malignant Melanoma of the Esophagus

    Get PDF
    The primary malignant melanoma of the esophagus (PMME) is a rare malignant disease, accounting for only 0.1–0.2% of all esophageal neoplasms, and the majority of the patients are diagnosed at advanced stages with poor prognosis. We present here a case of 56-year-old woman with epigastric pain and her endoscopic finding revealed several flat and black pigmented mucosal lesions within the distal portion of the esophagus which looked like flat nevus. The histopathology and immunohistochemical profile of the tissue specimens were diagnostic of malignant melanoma

    Electrical Control of Magnetization in Charge-ordered Multiferroic LuFe2O4

    Full text link
    LuFe2O4 exhibits multiferroicity due to charge order on a frustrated triangular lattice. We find that the magnetization of LuFe2O4 in the multiferroic state can be electrically controlled by applying voltage pulses. Depending on with or without magnetic fields, the magnetization can be electrically switched up or down. We have excluded thermal heating effect and attributed this electrical control of magnetization to an intrinsic magnetoelectric coupling in response to the electrical breakdown of charge ordering. Our findings open up a new route toward electrical control of magnetization.Comment: 14 pages, 5 figure

    Quantum electric-dipole liquid on a triangular lattice

    Get PDF
    Geometric frustrations and quantum mechanical fluctuations may prohibit the formation of long-range ordering even at the lowest temperature, and therefore liquid-like ground states could be expected. A good example is the quantum spin liquid in frustrated magnets that represents an exotic phase of matter and is attracting enormous interests. Geometric frustrations and quantum fluctuations can happen beyond magnetic systems. Here we propose that quantum electric-dipole liquids, analogs to quantum spin liquids, could emerge in frustrated dielectrics where antiferroelectrically coupled small electric dipoles reside on a triangular lattice. The quantum paraelectric hexaferrite BaFe12O19, in which small electric dipoles originated from the off-center displacement of Fe3+ in the FeO5 bipyramids constitute a two-dimensional triangular lattice, represents a promising candidate to generate the anticipated electric-dipole liquid. We present a series of experimental evidences, including dielectric permittivity, heat capacity, and thermal conductivity measured down to 66 mK, to reveal the existence of a nontrivial ground state in BaFe12O19, characterized by itinerant low-energy excitations with a small gap, to which we interpret as an exotic liquid-like quantum phase. The quantum electric-dipole liquids in frustrated dielectrics open up a fresh playground for fundamental physics and may find applications in quantum information and computation as well.Comment: 13 pages, 6 figure

    Magnetic field effect for cellulose nanofiber alignment

    Get PDF
    Regenerated cellulose formed into cellulose nanofibers under strong magnetic field and aligned perpendicularly to the magnetic field. Well-aligned microfibrils were found as the exposure time of the magnetic field increased. Better alignment and more crystalline structure of the cellulose resulted in the increased decomposition temperature of the material. X-ray crystallograms showed that crystallinity index of the cellulose increased as the exposure time of the magnetic field increased.open6

    Ordinary kriging approach to predicting long-term particulate matter concentrations in seven major Korean cities

    Get PDF
    Objectives Cohort studies of associations between air pollution and health have used exposure prediction approaches to estimate individual-level concentrations. A common prediction method used in Korean cohort studies is ordinary kriging. In this study, performance of ordinary kriging models for long-term particulate matter less than or equal to 10 μm in diameter (PM10) concentrations in seven major Korean cities was investigated with a focus on spatial prediction ability. Methods We obtained hourly PM10 data for 2010 at 226 urban-ambient monitoring sites in South Korea and computed annual average PM10 concentrations at each site. Given the annual averages, we developed ordinary kriging prediction models for each of the seven major cities and for the entire country by using an exponential covariance reference model and a maximum likelihood estimation method. For model evaluation, cross-validation was performed and mean square error and R-squared (R2) statistics were computed. Results Mean annual average PM10 concentrations in the seven major cities ranged between 45.5 and 66.0 μg/m3 (standard deviation=2.40 and 9.51 μg/m3, respectively). Cross-validated R2 values in Seoul and Busan were 0.31 and 0.23, respectively, whereas the other five cities had R2 values of zero. The national model produced a higher crossvalidated R2 (0.36) than those for the city-specific models. Conclusions In general, the ordinary kriging models performed poorly for the seven major cities and the entire country of South Korea, but the model performance was better in the national model. To improve model performance, future studies should examine different prediction approaches that incorporate PM10 source characteristics
    corecore