36,296 research outputs found

    Effects of Line-tying on Resistive Tearing Instability in Slab Geometry

    Full text link
    The effects of line-tying on resistive tearing instability in slab geometry is studied within the framework of reduced magnetohydrodynamics (RMHD).\citep{KadomtsevP1974,Strauss1976} It is found that line-tying has a stabilizing effect. The tearing mode is stabilized when the system length LL is shorter than a critical length LcL_{c}, which is independent of the resistivity η\eta. When LL is not too much longer than LcL_{c}, the growthrate γ\gamma is proportional to η\eta . When LL is sufficiently long, the tearing mode scaling γη3/5\gamma\sim\eta^{3/5} is recovered. The transition from γη\gamma\sim\eta to γη3/5\gamma\sim\eta^{3/5} occurs at a transition length Ltη2/5L_{t}\sim\eta^{-2/5}.Comment: Correct a typ

    Large exchange bias after zero-field cooling from an unmagnetized state

    Full text link
    Exchange bias (EB) is usually observed in systems with interface between different magnetic phases after field cooling. Here we report an unusual phenomenon in which a large EB can be observed in Ni-Mn-In bulk alloys after zero-field cooling from an unmagnetized state. We propose this is related to the newly formed interface between different magnetic phases during the initial magnetization process. The magnetic unidirectional anisotropy, which is the origin of EB effect, can be created isothermally below the blocking temperature.Comment: including supplementary information, Accepted by Physical Review Letter

    Stiffness modeling of robotic manipulator with gravity compensator

    Get PDF
    The paper focuses on the stiffness modeling of robotic manipulators with gravity compensators. The main attention is paid to the development of the stiffness model of a spring-based compensator located between sequential links of a serial structure. The derived model allows us to describe the compensator as an equivalent non-linear virtual spring integrated in the corresponding actuated joint. The obtained results have been efficiently applied to the stiffness modeling of a heavy industrial robot of the Kuka family

    General stationary charged black holes as charged particle accelerators

    Full text link
    We study the possibility of getting infinite energy in the center of mass frame of colliding charged particles in a general stationary charged black hole. For black holes with two-fold degenerate horizon, it is found that arbitrary high center-of-mass energy can be attained, provided that one of the particle has critical angular momentum or critical charge, and the remained parameters of particles and black holes satisfy certain restriction. For black holes with multiple-fold degenerate event horizons, the restriction is released. For non-degenerate black holes, the ultra-high center-of-mass is possible to be reached by invoking the multiple scattering mechanism. We obtain a condition for the existence of innermost stable circular orbit with critical angular momentum or charge on any-fold degenerate horizons, which is essential to get ultra-high center-of-mass energy without fine-tuning problem. We also discuss the proper time spending by the particle to reach the horizon and the duality between frame dragging effect and electromagnetic interaction. Some of these general results are applied to braneworld small black holes.Comment: 23 pages, no figures, revised version accepted for publication in Phys. Rev.
    corecore