4 research outputs found

    Enterovirus A71 VP1 Variation A289T Decreases the Central Nervous System Infectivity via Attenuation of Interactions between VP1 and Vimentin In Vitro and In Vivo

    No full text
    Vimentin (VIM) is a surface receptor for enterovirus-A71, mediating the initial binding and subsequent increase in EV-A71 infectivity. The caspid protein VP1 variation, A289T, is reportedly closely associated with less severe central nervous system (CNS) infections in humans. However, it is unclear whether VIM is associated with a reduction in CNS infections of EV-A71 in the presence of A289T. We investigated whether VIM served as a receptor for EV-A71 in the presence of an A298T substitution in VP1. EV-A71-289A and EV-A71-289T were used to infect human rhabdomyosarcoma cells, control human brain microvascular endothelial cells (HBMECs), and VIM-knockout (KO) HBMECs and inoculated BALB/c mice, SV129 mice, and VIM-KO SV129 mice. Furthermore, we cloned VP1-289A-Flag and VP1-289T-Flag proteins for co-immunoprecipitation analysis. Analysis of viral function revealed that the capacity of viral attachment, replication, and protein synthesis and secretion decreased in HBMECs during an EV-A71-289A infection, the infectivity being higher than that of EV-A71-289T upon VIM-KO. Histopathological and immunohistochemical analyses of brain tissue revealed that cerebral cortical damage was more extensive in EV-A71-289A than in EV-A71-289T infections in control SV129 mice; however, no significant difference was observed upon VIM-KO. Co-immunoprecipitation analysis revealed an interaction between VP1 and VIM, which was attenuated in VP1 harboring A289T; however, this attenuation was reversed by VIM (1-58) peptide. The A289T variation of VP1 specifically decreased the virulence of EV-A71 in HBMECs, and the attenuated interaction between VP1 harboring the A289T variation and VIM essentially decreased the CNS infectivity of EV-A71 in vitro and vivo

    Field investigation combined with modeling uncovers the ecological heterogeneity of Aedes albopictus habitats for strategically improving systematic management during urbanization

    No full text
    Abstract Background Aedes albopictus is an invasive vector of serious Aedes-borne diseases of global concern. Habitat management remains a critical factor for establishing a cost-effective systematic strategy for sustainable vector control. However, the community-based characteristics of Ae. albopictus habitats in complex urbanization ecosystems are still not well understood. Methods A large-scale investigation of aquatic habitats, involving 12 sites selected as representative of four land use categories at three urbanization levels, was performed in Guangzhou, China during 2015–2017. The characteristics and dynamics of these Ae. albopictus habitats were assessed using habitat-type composition, habitat preference, diversity indexes and the Route index (RI), and the temporal patterns of these indexes were evaluated by locally weighted scatterplot smoothing models. The associations of RI with urbanization levels, land use categories and climatic variables were inferred using generalized additive mixed models. Results A total of 1994 potential habitats and 474 Ae. albopictus-positive habitats were inspected. The majority of these habitats were container-type habitats, with Ae. albopictus showing a particularly higher habitat preference for plastic containers, metal containers and ceramic vessels. Unexpectedly, some non-container-type habitats, especially ornamental ponds and surface water, were found to have fairly high Ae. albopictus positivity rates. Regarding habitats, the land use category residential and rural in Jiangpu (Conghua District, Guangzhou) had the highest number of Ae. albopictus habitats with the highest positive rates. The type diversity of total habitats (H-total) showed a quick increase from February to April and peaked in April, while the H-total of positive habitats (H-positive) and RIs peaked in May. RIs mainly increased with the monthly average daily mean temperature and monthly cumulative rainfall. We also observed the accumulation of diapause eggs in the winter and diapause termination in the following March. Conclusions Ecological heterogeneity of habitat preferences of Ae. albopictus was demonstrated in four land use categories at three urbanization levels. The results reveal diversified habitat-type compositions and significant seasonal variations, indicating an ongoing adaptation of Ae. albopictus to the urbanization ecosystem. H-positivity and RIs were inferred as affected by climatic variables and diapause behavior of Ae. albopictus, suggesting that an effective control of overwintering diapause eggs is crucial. Our findings lay a foundation for establishing a stratified systematic management strategy of Ae. albopictus habitats in cities that is expected to complement and improve community-based interventions and sustainable vector management. Graphical Abstrac
    corecore