17 research outputs found

    Contrasting Patterns of Coral Bleaching Susceptibility in 2010 Suggest an Adaptive Response to Thermal Stress

    Get PDF
    Background: \ud Coral bleaching events vary in severity, however, to date, the hierarchy of susceptibility to bleaching among coral taxa has been consistent over a broad geographic range and among bleaching episodes. Here we examine the extent of spatial and temporal variation in thermal tolerance among scleractinian coral taxa and between locations during the 2010 thermally induced, large-scale bleaching event in South East Asia.\ud \ud Methodology/Principal Findings: \ud Surveys to estimate the bleaching and mortality indices of coral genera were carried out at three locations with contrasting thermal and bleaching histories. Despite the magnitude of thermal stress being similar among locations in 2010, there was a remarkable contrast in the patterns of bleaching susceptibility. Comparisons of bleaching susceptibility within coral taxa and among locations revealed no significant differences between locations with similar thermal histories, but significant differences between locations with contrasting thermal histories (Friedman = 34.97; p,0.001). Bleaching was much less severe at locations that bleached during 1998, that had greater historical temperature variability and lower rates of warming. Remarkably, Acropora and Pocillopora, taxa that are typically highly susceptible, although among the most susceptible in Pulau Weh (Sumatra, Indonesia) where respectively, 94% and 87% of colonies died, were among the least susceptible in Singapore, where only 5% and 12% of colonies died.\ud \ud Conclusions/Significance: \ud The pattern of susceptibility among coral genera documented here is unprecedented. A parsimonious explanation for these results is that coral populations that bleached during the last major warming event in 1998 have adapted and/or acclimatised to thermal stress. These data also lend support to the hypothesis that corals in regions subject to more variable temperature regimes are more resistant to thermal stress than those in less variable environments

    The hallmarks of living systems:Towards creating artificial cells

    No full text
    \u3cp\u3eDespite the astonishing diversity and complexity of living systems, they all share five common hallmarks: compartmentalization, growth and division, information processing, energy transduction and adaptability. In this review, we give not only examples of how cells satisfy these requirements for life and the ways in which it is possible to emulate these characteristics in engineered platforms, but also the gaps that remain to be bridged. The bottom-up synthesis of life-like systems continues to be driven forward by the advent of new technologies, by the discovery of biological phenomena through their transplantation to experimentally simpler constructs and by providing insights into one of the oldest questions posed by mankind, the origin of life on Earth.\u3c/p\u3

    Self-assembly of toroidal proteins explored using native mass spectrometry

    No full text
    © The Royal Society of Chemistry. The peroxiredoxins are a well characterised family of toroidal proteins which can self-assemble into a striking array of quaternary structures, including protein nanotubes, making them attractive as building blocks for nanotechnology. Tools to characterise these assemblies are currently scarce. Here, assemblies of peroxiredoxin proteins were examined using native mass spectrometry and complementary solution techniques. We demonstrated unequivocally that tube formation is fully reversible, a useful feature in a molecular switch. Simple assembly of individual toroids was shown to be tunable by pH and the presence of a histidine tag. Collision induced dissociation experiments on peroxiredoxin rings revealed a highly unusual symmetrical disassembly pathway, consistent with the structure disassembling as a hexamer of dimers. This study provides the foundation for the rational design and precise characterisation of peroxiredoxin protein structures where self-assembly can be harnessed as a key feature for applications in nanotechnology

    Self-assembly of toroidal proteins explored using native mass spectrometry

    No full text
    The peroxiredoxins are a well characterised family of toroidal proteins which can self-assemble into a striking array of quaternary structures, including protein nanotubes, making them attractive as building blocks for nanotechnology. Tools to characterise these assemblies are currently scarce. Here, assemblies of peroxiredoxin proteins were examined using native mass spectrometry and complementary solution techniques. We demonstrated unequivocally that tube formation is fully reversible, a useful feature in a molecular switch. Simple assembly of individual toroids was shown to be tunable by pH and the presence of a histidine tag. Collision induced dissociation experiments on peroxiredoxin rings revealed a highly unusual symmetrical disassembly pathway, consistent with the structure disassembling as a hexamer of dimers. This study provides the foundation for the rational design and precise characterisation of peroxiredoxin protein structures where self-assembly can be harnessed as a key feature for applications in nanotechnology

    Self-assembly of toroidal proteins explored using native mass spectrometry

    No full text
    The peroxiredoxins are a well characterised family of toroidal proteins which can self-assemble into a striking array of quaternary structures, including protein nanotubes, making them attractive as building blocks for nanotechnology. Tools to characterise these assemblies are currently scarce. Here, assemblies of peroxiredoxin proteins were examined using native mass spectrometry and complementary solution techniques. We demonstrated unequivocally that tube formation is fully reversible, a useful feature in a molecular switch. Simple assembly of individual toroids was shown to be tunable by pH and the presence of a histidine tag. Collision induced dissociation experiments on peroxiredoxin rings revealed a highly unusual symmetrical disassembly pathway, consistent with the structure disassembling as a hexamer of dimers. This study provides the foundation for the rational design and precise characterisation of peroxiredoxin protein structures where self-assembly can be harnessed as a key feature for applications in nanotechnology

    Self-assembly of toroidal proteins explored using native mass spectrometry

    No full text
    \u3cp\u3eThe peroxiredoxins are a well characterised family of toroidal proteins which can self-assemble into a striking array of quaternary structures, including protein nanotubes, making them attractive as building blocks for nanotechnology. Tools to characterise these assemblies are currently scarce. Here, assemblies of peroxiredoxin proteins were examined using native mass spectrometry and complementary solution techniques. We demonstrated unequivocally that tube formation is fully reversible, a useful feature in a molecular switch. Simple assembly of individual toroids was shown to be tunable by pH and the presence of a histidine tag. Collision induced dissociation experiments on peroxiredoxin rings revealed a highly unusual symmetrical disassembly pathway, consistent with the structure disassembling as a hexamer of dimers. This study provides the foundation for the rational design and precise characterisation of peroxiredoxin protein structures where self-assembly can be harnessed as a key feature for applications in nanotechnology.\u3c/p\u3

    Cryo-electron microscopy structure of human peroxiredoxin-3 filament reveals the assembly of a putative chaperone

    No full text
    Peroxiredoxins (Prxs) are a ubiquitous class of thiol-dependent peroxidases that play an important role in the protection and response of cells to oxidative stress. The catalytic unit of typical 2-Cys Prxs are homodimers, which can self-associate to form complex assemblies that are hypothesized to have signaling and chaperone activity. Mitochondrial Prx3 forms dodecameric toroids, which can further stack to form filaments, the so-called high-molecular-weight (HMW) form that has putative holdase activity. We used single-particle analysis and helical processing of electron cryomicroscopy images of human Prx3 filaments induced by low pH to generate a ∼7-Å resolution 3D structure of the HMW form, the first such structure for a 2-Cys Prx. The pseudo-atomic model reveals interactions that promote the stacking of the toroids and shows that unlike previously reported data, the structure can accommodate a partially folded C terminus. The HMW filament lumen displays hydrophobic patches, which we hypothesize bestow holdase activity

    Quaternary structure influences the peroxidase activity of peroxiredoxin 3

    No full text
    \u3cp\u3ePeroxiredoxins are abundant peroxidase enzymes that are key regulators of the cellular redox environment. A major subgroup of these proteins, the typical 2-Cys peroxiredoxins, can switch between dimers and decameric or dodecameric rings, during the catalytic cycle. The necessity of this change in quaternary structure for function as a peroxidase is not fully understood. In order to explore this, human peroxiredoxin 3 (Prx3) protein was engineered to form both obligate dimers (S75E Prx3) and stabilised dodecameric rings (S78C Prx3), uncoupling structural transformations from the catalytic cycle. The obligate dimer, S75E Prx3, retained catalytic activity towards hydrogen peroxide, albeit significantly lower than the wildtype and S78C proteins, suggesting an evolutionary advantage of having higher order self-assemblies.\u3c/p\u3

    Physicochemical characterization of polymer-stabilized coacervate protocells

    Get PDF
    \u3cp\u3eThe bottom-up construction of cell mimics has produced a range of membrane-bound protocells that have been endowed with functionality and biochemical processes reminiscent of living systems. The contents of these compartments, however, experience semidilute conditions, whereas macromolecules in the cytosol exist in protein-rich, crowded environments that affect their physicochemical properties, such as diffusion and catalytic activity. Recently, complex coacervates have emerged as attractive protocellular models because their condensed interiors would be expected to mimic this crowding better. Here we explore some relevant physicochemical properties of a recently developed polymer-stabilized coacervate system, such as the diffusion of macromolecules in the condensed coacervate phase, relative to in dilute solutions, the buffering capacity of the core, the molecular organization of the polymer membrane, the permeability characteristics of this membrane towards a wide range of compounds, and the behavior of a simple enzymatic reaction. In addition, either the coacervate charge or the cargo charge is engineered to allow the selective loading of protein cargo into the coacervate protocells. Our in-depth characterization has revealed that these polymer-stabilized coacervate protocells have many desirable properties, thus making them attractive candidates for the investigation of biochemical processes in stable, controlled, tunable, and increasingly cell-like environments.\u3c/p\u3

    Mimicking cellular compartmentalization in a hierarchical protocell through spontaneous spatial organization

    No full text
    \u3cp\u3eA systemic feature of eukaryotic cells is the spatial organization of functional components through compartmentalization. Developing protocells with compartmentalized synthetic organelles is, therefore, a critical milestone toward emulating one of the core characteristics of cellular life. Here we demonstrate the bottom-up, multistep, noncovalent, assembly of rudimentary subcompartmentalized protocells through the spontaneous encapsulation of semipermeable, polymersome proto-organelles inside cell-sized coacervates. The coacervate microdroplets are membranized using tailor-made terpolymers, to complete the hierarchical self-assembly of protocells, a system that mimics both the condensed cytosol and the structure of a cell membrane. In this way, the spatial organization of enzymes can be finely tuned, leading to an enhancement of functionality. Moreover, incompatible components can be sequestered in the same microenvironments without detrimental effect. The robust stability of the subcompartmentalized coacervate protocells in biocompatible milieu, such as in PBS or cell culture media, makes it a versatile platform to be extended toward studies in vitro, and perhaps, in vivo.\u3c/p\u3
    corecore