9 research outputs found

    Partially Annealed Disorder and Collapse of Like-Charged Macroions

    Full text link
    Charged systems with partially annealed charge disorder are investigated using field-theoretic and replica methods. Charge disorder is assumed to be confined to macroion surfaces surrounded by a cloud of mobile neutralizing counterions in an aqueous solvent. A general formalism is developed by assuming that the disorder is partially annealed (with purely annealed and purely quenched disorder included as special cases), i.e., we assume in general that the disorder undergoes a slow dynamics relative to fast-relaxing counterions making it possible thus to study the stationary-state properties of the system using methods similar to those available in equilibrium statistical mechanics. By focusing on the specific case of two planar surfaces of equal mean surface charge and disorder variance, it is shown that partial annealing of the quenched disorder leads to renormalization of the mean surface charge density and thus a reduction of the inter-plate repulsion on the mean-field or weak-coupling level. In the strong-coupling limit, charge disorder induces a long-range attraction resulting in a continuous disorder-driven collapse transition for the two surfaces as the disorder variance exceeds a threshold value. Disorder annealing further enhances the attraction and, in the limit of low screening, leads to a global attractive instability in the system.Comment: 21 pages, 2 figure

    Statistical mechanics of DNA adsorption on a carbon nanotube

    Get PDF
    The attraction between the polycyclic aromatic surface elements of carbon nanotubes (CNT) and the aro- matic nucleotides of deoxyribonucleic acid (DNA) leads to reversible adsorption (physisorption) between them. With the goal to provide the theoretical support to numerous technologies on the basis of DNA-CNT hybrids, we propose a Hamiltonian formulation for the zipper model that accounts for relevant interactions and allows for the processing of experimental data, which has awaited an available theory for a decade

    Statistical mechanics of DNA-nanotube adsorption

    No full text
    Attraction between the polycyclic aromatic surface elements of carbon nanotubes (CNT) and the aromatic nucleotides of deoxyribonucleic acid (DNA) leads to reversible adsorption (physisorption) between the two, a phenomenon related to hybridization. We propose a Hamiltonian formulation for the zipper model that accounts for the DNA-CNT interactions and allows for the processing of experimental data, which has awaited an available theory for a decade
    corecore