9,523 research outputs found

    Coarsening Dynamics of a One-Dimensional Driven Cahn-Hilliard System

    Full text link
    We study the one-dimensional Cahn-Hilliard equation with an additional driving term representing, say, the effect of gravity. We find that the driving field EE has an asymmetric effect on the solution for a single stationary domain wall (or `kink'), the direction of the field determining whether the analytic solutions found by Leung [J.Stat.Phys.{\bf 61}, 345 (1990)] are unique. The dynamics of a kink-antikink pair (`bubble') is then studied. The behaviour of a bubble is dependent on the relative sizes of a characteristic length scale E1E^{-1}, where EE is the driving field, and the separation, LL, of the interfaces. For EL1EL \gg 1 the velocities of the interfaces are negligible, while in the opposite limit a travelling-wave solution is found with a velocity vE/Lv \propto E/L. For this latter case (EL1EL \ll 1) a set of reduced equations, describing the evolution of the domain lengths, is obtained for a system with a large number of interfaces, and implies a characteristic length scale growing as (Et)1/2(Et)^{1/2}. Numerical results for the domain-size distribution and structure factor confirm this behavior, and show that the system exhibits dynamical scaling from very early times.Comment: 20 pages, revtex, 10 figures, submitted to Phys. Rev.

    Does a loaded warm-up influence jump asymmetry and badminton-specific change of direction performance?

    Get PDF
    Purpose: Previously, it has been shown that loaded warm-up (LWU) can improve change of direction speed (CODS) in professional badminton players. However, the effect of asymmetry on CODS in badminton players and the influence of LWU on asymmetry has not been examined. Methods: Twenty-one amateur badminton players (age: 29.5 ± 8.4; playing experience: 8.4 ± 4.2 years) completed two trials. In the first, they performed a control warm-up (CWU). In the second, they performed the same warm-up but with three exercises loaded with a weight vest (LWU). Following both warm-ups, players completed single leg jump (SLCMJ) and badminton-specific CODS tests. Results: No significant differences between CWU and LWU were observed for CODS, SLCMJ or SLCMJ asymmetry. However, small effect sizes suggested faster CODS (mean difference: -5%; d = -0.32) and lower asymmetries (mean difference: -3%; d = -0.39) following LWU. Five players (24%) experienced CODS improvements greater than the minimum detectable change whilst two (10%) responded negatively. Asymmetry was not correlated with CODS following CWU (ρ = 0.079; p = 0.733) but was negatively associated with CODS after LWU (ρ = -0.491; p = 0.035). Conclusion: LWU may prove a strategy to trial on an individual basis but generic recommendations should not be applied

    Macrorealism from entropic Leggett-Garg inequalities

    Full text link
    We formulate entropic Leggett-Garg inequalities, which place constraints on the statistical outcomes of temporal correlations of observables. The information theoretic inequalities are satisfied if macrorealism holds. We show that the quantum statistics underlying correlations between time-separated spin component of a quantum rotor mimics that of spin correlations in two spatially separated spin-ss particles sharing a state of zero total spin. This brings forth the violation of the entropic Leggett-Garg inequality by a rotating quantum spin-ss system in similar manner as does the entropic Bell inequality (Phys. Rev. Lett. 61, 662 (1988)) by a pair of spin-ss particles forming a composite spin singlet state.Comment: 5 pages, RevTeX, 2 eps figures, Accepted for publication in Phys. Rev.

    Dynamics of Ordering of Heisenberg Spins with Torque --- Nonconserved Case. I

    Full text link
    We study the dynamics of ordering of a nonconserved Heisenberg magnet. The dynamics consists of two parts --- an irreversible dissipation into a heat bath and a reversible precession induced by a torque due to the local molecular field. For quenches to zero temperature, we provide convincing arguments, both numerically (Langevin simulation) and analytically (approximate closure scheme due to Mazenko), that the torque is irrelevant at late times. We subject the Mazenko closure scheme to systematic numerical tests. Such an analysis, carried out for the first time on a vector order parameter, shows that the closure scheme performs respectably well. For quenches to TcT_c, we show, to O(ϵ2){\cal O}(\epsilon^2), that the torque is irrelevant at the Wilson-Fisher fixed point.Comment: 13 pages, REVTEX, and 19 .eps figures, compressed, Submitted to Phys. Rev.

    Measurement of Lagrangian velocity in fully developed turbulence

    Full text link
    We have developed a new experimental technique to measure the Lagrangian velocity of tracer particles in a turbulent flow, based on ultrasonic Doppler tracking. This method yields a direct access to the velocity of a single particule at a turbulent Reynolds number Rλ=740R_{\lambda} = 740. Its dynamics is analyzed with two decades of time resolution, below the Lagrangian correlation time. We observe that the Lagrangian velocity spectrum has a Lorentzian form EL(ω)=urms2TL/(1+(TLω)2)E^{L}(\omega) = u_{rms}^{2} T_{L} / (1 + (T_{L}\omega)^{2}), in agreement with a Kolmogorov-like scaling in the inertial range. The probability density function (PDF) of the velocity time increments displays a change of shape from quasi-Gaussian a integral time scale to stretched exponential tails at the smallest time increments. This intermittency, when measured from relative scaling exponents of structure functions, is more pronounced than in the Eulerian framework.Comment: 4 pages, 5 figures. to appear in PR

    Providing accessibility through implementation of electronic laboratory notebooks

    Get PDF
    Electronic Laboratory Notebooks (ELNs) have recently gained popularity in academia and industry while paper laboratory notebooks (PLNs) are becoming obsolete from the digital world. This is due to the many benefits of ELNs such as efficiency, accessibility, and data integrity (Bird, Willoughby, & Frey, 2013; Colabroy & Bell, 2019). In tertiary education, ELNs have been implemented to help students develop skills that are easily transferrable and prepare them for a technological rich workplace. Learning and understanding students’ and teaching staff perceptions’ of their experience with using ELNs, particularly during the COVID-19 pandemic, is key to successful implementation in education. A series of surveys were distributed and interviews were conducted across various undergraduate chemistry units from first to third year level and post-graduate teaching staff to gather insight into their perceptions of using PLNs and ELNs and the software platform, LabArchives. This presentation will provide some insight into students’ and teaching staff’s experiences with using ELNs. In general, it was found that students had positive perceptions of ELNs, even though there is a higher learning curve compared to PLNs. Reasons for this include increased communication, accessibility, and the ease of presenting work legibility. Also, the COVID-19 pandemic is associated with students having a positive experience with using ELNs mainly due to increased communication and accessibility from home where otherwise not possible. REFERENCES Bird, C. L., Willoughby, C., & Frey, J. G. (2013). Laboratory notebooks in the digital era: The role of ELNs in record keeping for chemistry and other sciences. Chemical Society Review, 42(20), 8157-8175. Colabroy, K. & Bell, J. K. (2019). Lab eNotebooks. In Biochemistry Education: From Theory to Practice, 1337, 173-195. American Chemical Society

    Spinodal Decomposition and the Tomita Sum Rule

    Full text link
    The scaling properties of a phase-ordering system with a conserved order parameter are studied. The theory developed leads to scaling functions satisfying certain general properties including the Tomita sum rule. The theory also gives good agreement with numerical results for the order parameter scaling function in three dimensions. The values of the associated nonequilibrium decay exponents are given by the known lower bounds.Comment: 15 pages, 6 figure

    A comparison of four functional test in discriminating fallers from non-fallers in older people

    Full text link
    Purpose : Which functional tests on mobility and balance can better screen older people at risk of falls is unclear. This study aims to compare the Berg Balance Scale (BBS), Tinetti Mobility Score (TMS), Elderly Mobility Scale (EMS) and Timed Up and Go test (TUG) in discriminating fallers from non-fallers in older people. Method : This was a case-control study involving one rater who conducted a mobility and balance assessment on subjects using the four functional tests in random sequence. Subjects recruited included 17 and 22 older people with a history of single and multiple falls respectively from a public Falls Clinic, and 39 community-dwellers without fall history and whose age, sex and BMI matched those of the fallers. All subjects underwent the mobility and balance assessment within one day. Results : Single fallers performed better than multiple fallers in all four functional tests but were worse than non-fallers in the BBS, TMS and TUG. The BBS demonstrated the best discriminating ability, with high sensitivity and specificity. The BBS item \u27pick up an object from the floor\u27 was the best at screening fallers. Conclusion : BBS was the most powerful functional test of the four in discriminating fallers from non-faller

    Evolution of speckle during spinodal decomposition

    Full text link
    Time-dependent properties of the speckled intensity patterns created by scattering coherent radiation from materials undergoing spinodal decomposition are investigated by numerical integration of the Cahn-Hilliard-Cook equation. For binary systems which obey a local conservation law, the characteristic domain size is known to grow in time τ\tau as R=[Bτ]nR = [B \tau]^n with n=1/3, where B is a constant. The intensities of individual speckles are found to be nonstationary, persistent time series. The two-time intensity covariance at wave vector k{\bf k} can be collapsed onto a scaling function Cov(δt,tˉ)Cov(\delta t,\bar{t}), where δt=k1/nBτ2τ1\delta t = k^{1/n} B |\tau_2-\tau_1| and tˉ=k1/nB(τ1+τ2)/2\bar{t} = k^{1/n} B (\tau_1+\tau_2)/2. Both analytically and numerically, the covariance is found to depend on δt\delta t only through δt/tˉ\delta t/\bar{t} in the small-tˉ\bar{t} limit and δt/tˉ1n\delta t/\bar{t} ^{1-n} in the large-tˉ\bar{t} limit, consistent with a simple theory of moving interfaces that applies to any universality class described by a scalar order parameter. The speckle-intensity covariance is numerically demonstrated to be equal to the square of the two-time structure factor of the scattering material, for which an analytic scaling function is obtained for large tˉ.\bar{t}. In addition, the two-time, two-point order-parameter correlation function is found to scale as C(r/(Bnτ12n+τ22n),τ1/τ2)C(r/(B^n\sqrt{\tau_1^{2n}+\tau_2^{2n}}),\tau_1/\tau_2), even for quite large distances rr. The asymptotic power-law exponent for the autocorrelation function is found to be λ4.47\lambda \approx 4.47, violating an upper bound conjectured by Fisher and Huse.Comment: RevTex: 11 pages + 12 figures, submitted to PR
    corecore