38 research outputs found

    Neutrophil Gelatinase-Associated Lipocalin (NGAL) in predicting acute kidney injury following orthotopic liver transplantation: A systematic review

    Get PDF
    Background: Acute kidney injury (AKI) is common after orthotopic liver transplantation (OLT) usually occurring early post-transplant. Multiple causes include graft preservation injury, blood loss, hypotension but also severity of recipient liver disease. Early intervention in AKI has both short and long term patient benefits. Unfortunately there are no current clinical biomarkers of early AKI. Aim: To assess the value of NGAL in predicting AKI following OLT. Methods: Ovid MEDLINE and EMBASE were searched between the years of 2000 and 2017 for studies using keywords: Neutrophil Gelatinase Associated Lipocalin or NGAL variants combined with synonyms for liver transplantation. Results: 96 studies were identified. 11 studies including 563 patients were considered suitable for analysis. Both urinary (uNGAL) and plasma NGAL (pNGAL) measurement were found to predict AKI after liver transplantation. Optimal reported area under the receiver-operator characteristics curve (AUROC) values of 0.5–0.83 and 0.54–0.86 respectively. Conclusions: NGAL is a good predictor of early AKI post OLT although there is considerable variation in the published results. Further studies with prospectively defined cut-off values, standardized definitions of AKI and rigorous data reporting should be conducted to establish its clinical usefulness and limitations

    Epac2-deficiency leads to more severe retinal swelling, glial reactivity and oxidative stress in transient middle cerebral artery occlusion induced ischemic retinopathy

    Get PDF
    Ischemia occurs in diabetic retinopathy with neuronal loss, edema, glial cell reactivity and oxidative stress. Epacs, consisting of Epac1 and Epac2, are cAMP mediators playing important roles in maintenance of endothelial barrier and neuronal functions. To investigate the roles of Epacs in the pathogenesis of ischemic retinopathy, transient middle cerebral artery occlusion (tMCAO) was performed on Epac1-deficient (Epac1) mice, Epac2-deficient (Epac2) mice, and their wild type counterparts (Epac1+/+ and Epac2+/+). Two-hour occlusion and 22-hour reperfusion were conducted to induce ischemia/reperfusion injury to the retina. After tMCAO, the contralateral retinae displayed similar morphology between different genotypes. Neuronal loss, retinal edema and increase in immunoreactivity for aquaporin 4 (AQP4), glial fibrillary acidic protein (GFAP), peroxiredoxin 6 (Prx6) were observed in ipsilateral retinae. Epac2 ipsilateral retinae showed more neuronal loss in retinal ganglion cell layer, increased retinal thickness and stronger immunostaining of AQP4, GFAP, and Prx6 than those of Epac2+/+. However, Epac1 ipsilateral retinae displayed similar pathology as those in Epac1+/+ mice. Our observations suggest that Epac2-deficiency led to more severe ischemic retinopathy after retinal ischemia/reperfusion injury.published_or_final_versio

    An update on irreversible electroporation of liver tumours

    Get PDF
    published_or_final_versio

    Protective effects of lycium barbarum polysaccharides on cerebral edema and blood-brain barrier disruption after ischemic stroke

    Get PDF
    Young Investigators Symposium I (Y3) - Di YangBACKGROUND: Ischemic stroke is a destructive cerebrovascular disease and one of the leading causes of death worldwide. The long term disability after stroke induces heavy burden both to the patients and the society. Yet, no effective neuroprotective agents are available. The polysaccharides extracted from the fruits of wolfberry, Lycium barbarum (LBP), showed neuroprotective and immune-modulative functions. We aim to evaluate the protective effects of LBP in experimental stroke using a focal cerebral ischemia/reperfusion (I/R) model. METHODS: C57BL/6N mice were subjected to 2 h of middle cerebral artery occlusion (MCAO) followed by 22 h of reperfusion. Prior to ischemia induction, animals were treated with either vehicle (PBS) or LBP daily for 7 days. Mice were evaluated for neurological deficits just before sacrifice. Brains were harvested for infarct size estimation, water content measurement and immunohistochemical analysis as well as Western blot experiments. Evans blue (EB) extravasation experiment was performed to determine blood-brain barrier (BBB) disruption after MCAO. RESULTS: LBP treatment significantly improved neurological scores and decreased infarct size, hemispheric swelling and water content as well as reduced EB extravasation. In addition, fewer apoptotic cells were identified in the LBP-treated brains by TUNEL assay. Immunoreactivity for aquaporin-4 and glial fibrillary acidic protein were also significantly decreased in LBP-treated brains. We further observed a reduction of nuclear factor-ΞΊB translocation and IΞΊB expression after LBP treatment. CONCLUSION: Seven-day LBP pre-treatment effectively improved neurological deficits, decreased infarct size and cerebral edema as well as protected the brain from BBB disruption, aquaporin water channel up-regulation and glial activation. The protective effects of LBP might partially act through its anti-inflammatory effects. The present study suggests that LBP may be used as a preventive neuroprotectant for ischemic stroke.postprin

    Lycium barbarum polysaccharides reduce neuronal damage, blood-retinal barrier disruption and oxidative stress in retinal ischemia/reperfusion injury

    Get PDF
    Neuronal cell death, glial cell activation, retinal swelling and oxidative injury are complications in retinal ischemia/ reperfusion (I/R) injuries. Lycium barbarum polysaccharides (LBP), extracts from the wolfberries, are good for "eye health" according to Chinese medicine. The aim of our present study is to explore the use of LBP in retinal I/R injury. Retinal I/R injury was induced by surgical occlusion of the internal carotid artery. Prior to induction of ischemia, mice were treated orally with either vehicle (PBS) or LBP (1 mg/kg) once a day for 1 week. Paraffin-embedded retinal sections were prepared. Viable cells were counted; apoptosis was assessed using TUNEL assay. Expression levels of glial fibrillary acidic protein (GFAP), aquaporin-4 (AQP4), poly(ADP-ribose) (PAR) and nitrotyrosine (NT) were investigated by immunohistochemistry. The integrity of blood-retinal barrier (BRB) was examined by IgG extravasations. Apoptosis and decreased viable cell count were found in the ganglion cell layer (GCL) and the inner nuclear layer (INL) of the vehicle-treated I/R retina. Additionally, increased retinal thickness, GFAP activation, AQP4 up-regulation, IgG extravasations and PAR expression levels were observed in the vehicle-treated I/R retina. Many of these changes were diminished or abolished in the LBP-treated I/R retina. Pre-treatment with LBP for 1 week effectively protected the retina from neuronal death, apoptosis, glial cell activation, aquaporin water channel up-regulation, disruption of BRB and oxidative stress. The present study suggests that LBP may have a neuroprotective role to play in ocular diseases for which I/R is a feature. Β© 2011 Li et al.published_or_final_versio
    corecore